Pytorch implementation of Zero-DCE++

Overview

Zero-DCE++

You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html.

You can find the details of our CVPR version: https://li-chongyi.github.io/Proj_Zero-DCE.html.

If you use this code, please cite our paper. Please hit the star at the top-right corner. Thanks!

Pytorch

Pytorch implementation of Zero-DCE++

Requirements

  1. Python 3.7
  2. Pytorch 1.0.0
  3. opencv
  4. torchvision 0.2.1
  5. cuda 10.0

Zero-DCE++ does not need special configurations. Just basic environment.

Or you can create a conda environment to run our code like this: conda create --name zerodce++_env opencv pytorch==1.0.0 torchvision==0.2.1 cuda100 python=3.7 -c pytorch

Folder structure

Download the Zero-DCE++ first. The following shows the basic folder structure.


├── data
│   ├── test_data 
│   └── train_data 
├── lowlight_test.py # testing code
├── lowlight_train.py # training code
├── model.py # Zero-DEC++ network
├── dataloader.py
├── snapshots_Zero_DCE++
│   ├── Epoch99.pth #  A pre-trained snapshot (Epoch99.pth)

Test:

cd Zero-DCE++

python lowlight_test.py 

The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "data". You can find the enhanced images in the "result" folder.

Train:

cd Zero-DCE++

python lowlight_train.py 

License

The code is made available for academic research purpose only. This project is open sourced under MIT license.

Bibtex

@inproceedings{Zero-DCE++,
 author = {Li, Chongyi and Guo, Chunle Guo and Loy, Chen Change},
 title = {Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation},
 booktitle = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
 pages    = {},
 month = {},
 year = {2021}
 doi={10.1109/TPAMI.2021.3063604}
}

(Full paper: https://ieeexplore.ieee.org/document/9369102 or arXiv version: https://arxiv.org/abs/2103.00860)

Contact

If you have any questions, please contact Chongyi Li at [email protected] or Chunle Guo at [email protected].

Owner
Chongyi Li
Chongyi Li
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022