Kohei's 5th place solution for xview3 challenge

Overview

xview3-kohei-solution

Usage

This repository assumes that the given data set is stored in the following locations:

$ ls data/input/xview3/*.csv
data/input/xview3/train.csv  data/input/xview3/validation.csv

$ ls data/input/xview3/downloaded
00a035722196ee86t.tar.gz  4455faa0cb4824f4t.tar.gz  85fe34d1aee53a7ft.tar.gz  c07f6ec980c2c149t.tar.gz
014261f774287442t.tar.gz  4518c556b38a5fa4t.tar.gz  864390795b0439b1t.tar.gz  c0831dbd6d7f3c56t.tar.gz
(snip)

In the case of training, create a virtual env as follows:

# Setup: Create the virtual env
$ poetry config virtualenvs.in-project true
$ poetry install
$ poetry run pip install albumentations timm segmentation_models_pytorch torch==1.10.0+cu113 torchvision==0.11.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

Training

To save storage space, my preprocessing code assumes that the input image file is the original file in .tar.gz format. It does NOT assume pre-extracted files. The batch size and other settings are based on the assumption that two RTX3080 GPU cards are used.

$ bash train.sh

Inference

My containerized inference code follows the xView3 evaluation protocol. The detailed usage of the xview3 evaluation protocol is described in https://iuu.xview.us/verify.

To build the Docker Image, you need the model weights generated by train.sh. The pre-computed files can be downloaded from my Google Drive.

You will also need to download and extract gshhg-shp-2.3.7.zip as external data. GSHHG data can be found at https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/

The Docker image containing these model weights and external data has already been uploaded to Docker Hub (smly/kohei-xview3:latest).

## Setup: Build the docker image -----
$ docker build --no-cache -t kohei-xview3 .

## Inference -----
$ docker run \
    --shm-size 16G \
    --gpus=1 \
    --mount type=bind,source=/home/xv3data,target=/on-docker/xv3data \
    kohei-xview3 \
    /on-docker/xv3data/ \
    0157baf3866b2cf9v \
    /on-docker/xv3data/prediction/prediction.csv
Owner
Kohei Ozaki
Kohei Ozaki
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Yolo Traffic Light Detection With Python

Yolo-Traffic-Light-Detection This project is based on detecting the Traffic light. Pretained data is used. This application entertained both real time

Ananta Raj Pant 2 Aug 08, 2022
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023