StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

Overview

StarGAN v2 - Official PyTorch Implementation

StarGAN v2: Diverse Image Synthesis for Multiple Domains
Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-Woo Ha
In CVPR 2020. (* indicates equal contribution)

Paper: https://arxiv.org/abs/1912.01865
Video: https://youtu.be/0EVh5Ki4dIY

Abstract: A good image-to-image translation model should learn a mapping between different visual domains while satisfying the following properties: 1) diversity of generated images and 2) scalability over multiple domains. Existing methods address either of the issues, having limited diversity or multiple models for all domains. We propose StarGAN v2, a single framework that tackles both and shows significantly improved results over the baselines. Experiments on CelebA-HQ and a new animal faces dataset (AFHQ) validate our superiority in terms of visual quality, diversity, and scalability. To better assess image-to-image translation models, we release AFHQ, high-quality animal faces with large inter- and intra-domain variations. The code, pre-trained models, and dataset are available at clovaai/stargan-v2.

Teaser video

Click the figure to watch the teaser video.

IMAGE ALT TEXT HERE

TensorFlow implementation

The TensorFlow implementation of StarGAN v2 by our team member junho can be found at clovaai/stargan-v2-tensorflow.

Software installation

Clone this repository:

git clone https://github.com/clovaai/stargan-v2.git
cd stargan-v2/

Install the dependencies:

conda create -n stargan-v2 python=3.6.7
conda activate stargan-v2
conda install -y pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install x264=='1!152.20180717' ffmpeg=4.0.2 -c conda-forge
pip install opencv-python==4.1.2.30 ffmpeg-python==0.2.0 scikit-image==0.16.2
pip install pillow==7.0.0 scipy==1.2.1 tqdm==4.43.0 munch==2.5.0

Datasets and pre-trained networks

We provide a script to download datasets used in StarGAN v2 and the corresponding pre-trained networks. The datasets and network checkpoints will be downloaded and stored in the data and expr/checkpoints directories, respectively.

CelebA-HQ. To download the CelebA-HQ dataset and the pre-trained network, run the following commands:

bash download.sh celeba-hq-dataset
bash download.sh pretrained-network-celeba-hq
bash download.sh wing

AFHQ. To download the AFHQ dataset and the pre-trained network, run the following commands:

bash download.sh afhq-dataset
bash download.sh pretrained-network-afhq

Generating interpolation videos

After downloading the pre-trained networks, you can synthesize output images reflecting diverse styles (e.g., hairstyle) of reference images. The following commands will save generated images and interpolation videos to the expr/results directory.

CelebA-HQ. To generate images and interpolation videos, run the following command:

python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 \
               --checkpoint_dir expr/checkpoints/celeba_hq \
               --result_dir expr/results/celeba_hq \
               --src_dir assets/representative/celeba_hq/src \
               --ref_dir assets/representative/celeba_hq/ref

To transform a custom image, first crop the image manually so that the proportion of face occupied in the whole is similar to that of CelebA-HQ. Then, run the following command for additional fine rotation and cropping. All custom images in the inp_dir directory will be aligned and stored in the out_dir directory.

python main.py --mode align \
               --inp_dir assets/representative/custom/female \
               --out_dir assets/representative/celeba_hq/src/female

AFHQ. To generate images and interpolation videos, run the following command:

python main.py --mode sample --num_domains 3 --resume_iter 100000 --w_hpf 0 \
               --checkpoint_dir expr/checkpoints/afhq \
               --result_dir expr/results/afhq \
               --src_dir assets/representative/afhq/src \
               --ref_dir assets/representative/afhq/ref

Evaluation metrics

To evaluate StarGAN v2 using Fréchet Inception Distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS), run the following commands:

# celeba-hq
python main.py --mode eval --num_domains 2 --w_hpf 1 \
               --resume_iter 100000 \
               --train_img_dir data/celeba_hq/train \
               --val_img_dir data/celeba_hq/val \
               --checkpoint_dir expr/checkpoints/celeba_hq \
               --eval_dir expr/eval/celeba_hq

# afhq
python main.py --mode eval --num_domains 3 --w_hpf 0 \
               --resume_iter 100000 \
               --train_img_dir data/afhq/train \
               --val_img_dir data/afhq/val \
               --checkpoint_dir expr/checkpoints/afhq \
               --eval_dir expr/eval/afhq

Note that the evaluation metrics are calculated using random latent vectors or reference images, both of which are selected by the seed number. In the paper, we reported the average of values from 10 measurements using different seed numbers. The following table shows the calculated values for both latent-guided and reference-guided synthesis.

Dataset FID (latent) LPIPS (latent) FID (reference) LPIPS (reference) Elapsed time
celeba-hq 13.73 ± 0.06 0.4515 ± 0.0006 23.84 ± 0.03 0.3880 ± 0.0001 49min 51s
afhq 16.18 ± 0.15 0.4501 ± 0.0007 19.78 ± 0.01 0.4315 ± 0.0002 64min 49s

Training networks

To train StarGAN v2 from scratch, run the following commands. Generated images and network checkpoints will be stored in the expr/samples and expr/checkpoints directories, respectively. Training takes about three days on a single Tesla V100 GPU. Please see here for training arguments and a description of them.

# celeba-hq
python main.py --mode train --num_domains 2 --w_hpf 1 \
               --lambda_reg 1 --lambda_sty 1 --lambda_ds 1 --lambda_cyc 1 \
               --train_img_dir data/celeba_hq/train \
               --val_img_dir data/celeba_hq/val

# afhq
python main.py --mode train --num_domains 3 --w_hpf 0 \
               --lambda_reg 1 --lambda_sty 1 --lambda_ds 2 --lambda_cyc 1 \
               --train_img_dir data/afhq/train \
               --val_img_dir data/afhq/val

Animal Faces-HQ dataset (AFHQ)

We release a new dataset of animal faces, Animal Faces-HQ (AFHQ), consisting of 15,000 high-quality images at 512×512 resolution. The figure above shows example images of the AFHQ dataset. The dataset includes three domains of cat, dog, and wildlife, each providing about 5000 images. By having multiple (three) domains and diverse images of various breeds per each domain, AFHQ sets a challenging image-to-image translation problem. For each domain, we select 500 images as a test set and provide all remaining images as a training set. To download the dataset, run the following command:

bash download.sh afhq-dataset

[Update: 2021.07.01] We rebuild the original AFHQ dataset by using high-quality resize filtering (i.e., Lanczos resampling). Please see the clean FID paper that brings attention to the unfortunate software library situation for downsampling. We thank to Alias-Free GAN authors for their suggestion and contribution to the updated AFHQ dataset. If you use the updated dataset, we recommend to cite not only our paper but also their paper.

The differences from the original dataset are as follows:

  • We resize the images using Lanczos resampling instead of nearest neighbor downsampling.
  • About 2% of the original images had been removed. So the set is now has 15803 images, whereas the original had 16130.
  • Images are saved as PNG format to avoid compression artifacts. This makes the files bigger than the original, but it's worth it.

To download the updated dataset, run the following command:

bash download.sh afhq-v2-dataset

License

The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

For business inquiries, please contact [email protected].
For technical and other inquires, please contact [email protected].

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{choi2020starganv2,
  title={StarGAN v2: Diverse Image Synthesis for Multiple Domains},
  author={Yunjey Choi and Youngjung Uh and Jaejun Yoo and Jung-Woo Ha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2020}
}

Acknowledgements

We would like to thank the full-time and visiting Clova AI Research (now NAVER AI Lab) members for their valuable feedback and an early review: especially Seongjoon Oh, Junsuk Choe, Muhammad Ferjad Naeem, and Kyungjune Baek. We also thank Alias-Free GAN authors for their contribution to the updated AFHQ dataset.

Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022