这是一个yolo3-tf2的源码,可以用于训练自己的模型。

Overview

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现


目录

  1. 性能情况 Performance
  2. 所需环境 Environment
  3. 文件下载 Download
  4. 训练步骤 How2train
  5. 预测步骤 How2predict
  6. 评估步骤 How2eval
  7. 参考资料 Reference

性能情况

训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5
COCO-Train2017 yolo_weights.h5 COCO-Val2017 416x416 38.1 66.8

所需环境

tensorflow==2.2.0

文件下载

训练所需的yolo_weights.pth可以在百度云下载。
链接: https://pan.baidu.com/s/1URJJiPUYjiWzitU0nytBnA 提取码: qvxs

VOC数据集下载地址如下:
VOC2007+2012训练集
链接: https://pan.baidu.com/s/16pemiBGd-P9q2j7dZKGDFA 提取码: eiw9

VOC2007测试集
链接: https://pan.baidu.com/s/1BnMiFwlNwIWG9gsd4jHLig 提取码: dsda

训练步骤

a、数据集的准备

本文使用VOC格式进行训练,训练前需要自己制作好数据集,如果没有自己的数据集,可以通过Github连接下载VOC12+07的数据集尝试下。
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。

b、数据集的处理

在完成数据集的摆放之后,我们需要对数据集进行下一步的处理,目的是获得训练用的2007_train.txt以及2007_val.txt,需要用到根目录下的voc_annotation.py。
voc_annotation.py里面有一些参数需要设置。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:

cat
dog
...

c、开始网络训练

通过voc_annotation.py我们已经生成了2007_train.txt以及2007_val.txt,此时我们可以开始训练了。训练的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。

d、训练结果预测

训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。

完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。

预测步骤

a、使用预训练权重

  1. 下载完库后解压,在百度网盘下载yolo_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

b、使用自己训练的权重

  1. 按照训练步骤训练。
  2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类
_defaults = {
    #--------------------------------------------------------------------------#
    #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
    #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
    #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
    #--------------------------------------------------------------------------#
    "model_path"        : 'model_data/yolo_weight.h5',
    "classes_path"      : 'model_data/coco_classes.txt',
    #---------------------------------------------------------------------#
    #   anchors_path代表先验框对应的txt文件,一般不修改。
    #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
    #---------------------------------------------------------------------#
    "anchors_path"      : 'model_data/yolo_anchors.txt',
    "anchors_mask"      : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
    #---------------------------------------------------------------------#
    #   输入图片的大小,必须为32的倍数。
    #---------------------------------------------------------------------#
    "input_shape"       : [416, 416],
    #---------------------------------------------------------------------#
    #   只有得分大于置信度的预测框会被保留下来
    #---------------------------------------------------------------------#
    "confidence"        : 0.5,
    #---------------------------------------------------------------------#
    #   非极大抑制所用到的nms_iou大小
    #---------------------------------------------------------------------#
    "nms_iou"           : 0.3,
    "max_boxes"         : 100,
    #---------------------------------------------------------------------#
    #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
    #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
    #---------------------------------------------------------------------#
    "letterbox_image"   : False,
}
  1. 运行predict.py,输入
img/street.jpg
  1. 在predict.py里面进行设置可以进行fps测试和video视频检测。

评估步骤

  1. 本文使用VOC格式进行评估。
  2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1。
  3. 利用voc_annotation.py划分测试集后,前往get_map.py文件修改classes_path,classes_path用于指向检测类别所对应的txt,这个txt和训练时的txt一样。评估自己的数据集必须要修改。
  4. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。

Reference

https://github.com/qqwweee/keras-yolo3
https://github.com/eriklindernoren/PyTorch-YOLOv3
https://github.com/BobLiu20/YOLOv3_PyTorch

You might also like...
Comments
  • W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated. 	 [[{{node PyFunc}}]]

    W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated. [[{{node PyFunc}}]]

    f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
    

    OverflowError: cannot convert float infinity to integer 2022-10-17 08:14:29.544536: W tensorflow/core/kernels/data/generator_dataset_op.cc:103] Error occurred when finalizing GeneratorDataset iterator: Failed precondition: Python interpreter state is not initialized. The process may be terminated. [[{{node PyFunc}}]] upup 这个报错是什么意思呢

    opened by 11wswhl 2
  • Resource exhausted: OOM when allocating tensor with shape[255,256,256,69] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

    Resource exhausted: OOM when allocating tensor with shape[255,256,256,69] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

    I meet an error:

    2022-01-30 10:37:36.925076: I tensorflow/core/common_runtime/bfc_allocator.cc:923] total_region_allocated_bytes_: 1074790400 memory_limit_: 3059430195 available bytes: 1984639795 curr_region_allocation_bytes_: 1073741824 2022-01-30 10:37:36.925383: I tensorflow/core/common_runtime/bfc_allocator.cc:929] Stats: Limit: 3059430195 InUse: 621716992 MaxInUse: 621716992 NumAllocs: 1595 MaxAllocSize: 33554432

    2022-01-30 10:37:36.925822: W tensorflow/core/common_runtime/bfc_allocator.cc:424] **********************************************************__________________________________________ 2022-01-30 10:37:36.926021: W tensorflow/core/framework/op_kernel.cc:1651] OP_REQUIRES failed at cwise_ops_common.cc:82 : Resource exhausted: OOM when allocating tensor with shape[255,256,256,69] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

    Could you please help me solve this problem

    opened by Linamiao-1998 1
  • 您好,我可能发现了一个在yolo_traing.py中的bug

    您好,我可能发现了一个在yolo_traing.py中的bug

    是这样的,因为我的数据长宽大概为256,640这样的,所以我准备设置将训练的inputshape也设置为256,640,但训练时损失会很快变为负数。 而当我全程使用正方形训练和测试都没有问题.使用inputshape为正方形训练,然后设置inputshape为矩形测试也没有问题 经过一路排查,应该是将y_true的x,y转为x,y的偏移量时grid_shapes[l]的长,宽顺序反了: image

    将其中的grid_shapes[l][:]改为grid_shapes[l][::-1]我的训练就正常了。 因为正方形长宽高相等,所以不影响,而矩形这样会导致偏移量有大于1的值产生,在使用keras.binary_crossentropy计算损失时,label大于1则会产生负损失。 keras.binary_crossentropy(label , logits, from_logits=True)的计算公式如下: x = logits, z = labels loss = max(x, 0) - x * z + log(1 + exp(-abs(x)))

    opened by kill2013110 2
  • 请问有尝试过将该模型保存为savedmodel格式的吗?我保存成这样后再读取就会出错

    请问有尝试过将该模型保存为savedmodel格式的吗?我保存成这样后再读取就会出错

    使用savedmodel是因为要后续准备冻结模型。 函数用的tf.keras.model.save_model()和tf.keras.model.load_model() 分析了一下,是因为模型中包含了自定义的Lambda层,所以报错了, 对于lambda层我准备转为tf.function, 应该可以解决问题, 您有什么好的建议吗

    opened by kill2013110 4
Releases(v3.2)
  • v3.2(Jul 16, 2022)

    重要更新

    • 增加了训练时评估,可以在train.py进行开关或者调整评估周期。
    • 更新了评估代码,可以设置计算Recall和Precision的门限。
    • 在summary.py新增网络各类参数计算。
    • 增加保存权值的方法,loss最低、最近一次等。
    • 新增大量注释。
    Source code(tar.gz)
    Source code(zip)
  • v3.1(Feb 23, 2022)

    重要更新

    • 修改了loss组成,使得分类、目标、回归loss的比例合适。
    • 支持step、cos学习率下降法。
    • 支持adam、sgd优化器选择。
    • 支持学习率根据batch_size自适应调整。
    • 支持不同预测模式的选择,单张图片预测、文件夹预测、视频预测、图片裁剪、heatmap、各个种类目标数量计算。
    • 更新summary.py文件,用于观看网络结构。
    • 增加了多GPU训练。
    Source code(tar.gz)
    Source code(zip)
  • v2.0(Feb 21, 2022)

    重要更新

    • 更新train.py文件,增加了大量的注释,增加多个可调整参数。
    • 更新predict.py文件,增加了大量的注释,增加fps、视频预测、批量预测等功能。
    • 更新yolo.py文件,增加了大量的注释,增加先验框选择、置信度、非极大抑制等参数。
    • 合并get_dr_txt.py、get_gt_txt.py和get_map.py文件,通过一个文件来实现数据集的评估。
    • 更新voc_annotation.py文件,增加多个可调整参数。
    • 更新kmeans_for_anchors.py文件,用于计算先验框的大小。
    • 更新summary.py文件,用于观看网络结构。
    Source code(tar.gz)
    Source code(zip)
Owner
Bubbliiiing
Bubbliiiing
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022