Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

Related tags

Deep Learninglibranet
Overview

LibraNet

weighing_counts

This repository includes the official implementation of LibraNet for crowd counting, presented in our paper:

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

Proc. European Conference on Computer Vision (ECCV), 2020

Liang Liu1,†, Hao Lu2,†, Hongwei Zou1, Haipeng Xiong1, Zhiguo Cao1, Chunhua Shen1

1Huazhong University of Science and Technology

2The University of Adelaide, Australia

equal contribution

Model Structure

Installation

The code has been tested on Python 3.7.6 and PyTorch 1.4.0. Please follow the official instructions to configure your environment. See other required packages in requirements.txt.

Data Structure

$./data/
├──── Train
├──── Test

Training

$./backbone.pth.tar

Train LibraNet on SHT Part_A Dataset

python train.py

Inference

Pre-trained Model on SHT Part_A dataset

  • Download the model from: [BaiduYun (68.3 MB) (code: 20um) or OneDrive (70 MB)](https://1drv.ms/u/s!AkNf_IPSDakh8XBVTepnGq2J_YjN?e=lJCCUw)
  • The result of this model is: mae=55.5, mse=93.9. However, if the pythorch version is less than 1.4.0 (1.3.1 for example), the result might be: mae=56.3 , mse=95.2. Now I try to find the reason.
  • Move the model into the folder, and the path structure should like this:
$./trained_model/
├──── LibraNet_SHT_A.pth.tar

Evaluation

python Test_SHT_A.py

Citation

If you find this work or code useful for your research, please cite:

@article{liu2020WeighingCounts,
  title={Weighing Counts: Sequential Crowd Counting by Reinforcement Learning},
  author={Liu, Liang and Lu, Hao and Zou, Hongwei and Xiong, Haipeng and Cao, Zhiguo and Chun, Huashen},
  journal={Proc. Eur. Conf. Computer Vision},
  year={2020}
}

Update

2020-9-24

  1. Fix a bug in train_test.py line 32
  • Error:
for image_index in range(0, 1):
  • Correct:
for image_index in range(0, train_number):
  1. Add LICENSE.md

Permission

The code are only for non-commercial purposes. Copyrights reserved.

Contact: Liang Liu ([email protected]) Hao Lu ([email protected])

Owner
Hao Lu
I am currently an Associate Professor with Huazhong University of Science and Technology, China.
Hao Lu
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022