Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

Related tags

Deep Learninglibranet
Overview

LibraNet

weighing_counts

This repository includes the official implementation of LibraNet for crowd counting, presented in our paper:

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

Proc. European Conference on Computer Vision (ECCV), 2020

Liang Liu1,†, Hao Lu2,†, Hongwei Zou1, Haipeng Xiong1, Zhiguo Cao1, Chunhua Shen1

1Huazhong University of Science and Technology

2The University of Adelaide, Australia

equal contribution

Model Structure

Installation

The code has been tested on Python 3.7.6 and PyTorch 1.4.0. Please follow the official instructions to configure your environment. See other required packages in requirements.txt.

Data Structure

$./data/
├──── Train
├──── Test

Training

$./backbone.pth.tar

Train LibraNet on SHT Part_A Dataset

python train.py

Inference

Pre-trained Model on SHT Part_A dataset

  • Download the model from: [BaiduYun (68.3 MB) (code: 20um) or OneDrive (70 MB)](https://1drv.ms/u/s!AkNf_IPSDakh8XBVTepnGq2J_YjN?e=lJCCUw)
  • The result of this model is: mae=55.5, mse=93.9. However, if the pythorch version is less than 1.4.0 (1.3.1 for example), the result might be: mae=56.3 , mse=95.2. Now I try to find the reason.
  • Move the model into the folder, and the path structure should like this:
$./trained_model/
├──── LibraNet_SHT_A.pth.tar

Evaluation

python Test_SHT_A.py

Citation

If you find this work or code useful for your research, please cite:

@article{liu2020WeighingCounts,
  title={Weighing Counts: Sequential Crowd Counting by Reinforcement Learning},
  author={Liu, Liang and Lu, Hao and Zou, Hongwei and Xiong, Haipeng and Cao, Zhiguo and Chun, Huashen},
  journal={Proc. Eur. Conf. Computer Vision},
  year={2020}
}

Update

2020-9-24

  1. Fix a bug in train_test.py line 32
  • Error:
for image_index in range(0, 1):
  • Correct:
for image_index in range(0, train_number):
  1. Add LICENSE.md

Permission

The code are only for non-commercial purposes. Copyrights reserved.

Contact: Liang Liu ([email protected]) Hao Lu ([email protected])

Owner
Hao Lu
I am currently an Associate Professor with Huazhong University of Science and Technology, China.
Hao Lu
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022