Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

Overview

TOQ-Nets-PyTorch-Release

Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets

Temporal and Object Quantification Networks
Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, and Tomer D. Ullman
In International Joint Conference on Artificial Intelligence (IJCAI) 2021 (Poster)
[Paper] [Project Page] [BibTex]

@inproceedings{Mao2021Temporal,
    title={{Temporal and Object Quantification Networks}},
    author={Mao, Jiayuan and Luo, Zhezheng and Gan, Chuang and Tenenbaum, Joshua B. and Wu, Jiajun and Kaelbling, Leslie Pack and Ullman, Tomer D.},
    booktitle={International Joint Conferences on Artificial Intelligence},
    year={2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Install Jacinle: Clone the package, and add the bin path to your global PATH environment variable:

git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH

Clone this repository:

git clone https://github.com/vacancy/TOQ-Nets-PyTorch --recursive

Create a conda environment for TOQ-Nets, and install the requirements. This includes the required python packages from both Jacinle TOQ-Nets. Most of the required packages have been included in the built-in anaconda package:

conda create -n nscl anaconda
conda install pytorch torchvision -c pytorch

Dataset preparation

We evaluate our model on four datasets: Soccer Event, RLBench, Toyota Smarthome and Volleyball. To run the experiments, you need to prepare them under NSPCL-Pytorch/data.

Soccer Event

Download link

RLBenck

Download link

Toyota Smarthome

Dataset can be obtained from the website: Toyota Smarthome: Real-World Activities of Daily Living

@InProceedings{Das_2019_ICCV,
    author = {Das, Srijan and Dai, Rui and Koperski, Michal and Minciullo, Luca and Garattoni, Lorenzo and Bremond, Francois and Francesca, Gianpiero},
    title = {Toyota Smarthome: Real-World Activities of Daily Living},
    booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2019}
}

Volleyball

Dataset can be downloaded from this github repo.

@inproceedings{msibrahiCVPR16deepactivity,
  author    = {Mostafa S. Ibrahim and Srikanth Muralidharan and Zhiwei Deng and Arash Vahdat and Greg Mori},
  title     = {A Hierarchical Deep Temporal Model for Group Activity Recognition.},
  booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2016}
}

Training and evaluation.

Standard 9-way classification task

To train the model on the standard 9-way classification task on the soccer dataset:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1001 --run_name 9_way_classification -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mmodel-both_quantify False -Mmodel-depth 0

The hyper parameter estimate_inequality_parameters is to estimate the distribution of input physical features, and is only required when training TOQ-Nets (but not for baselines).

Few-shot actions

To train on regular actions and test on new actions:

jac-crun <gpu_ids> scripts/action_classification_softmax.py  -t 1002 --run_name few_shot -Mdata-name "'TrajectorySingleActionNvN_Wrapper_FewShot_Softmax'" -Mmodel-name "'NLTL_SAv3'" -Mlr 3e-3 -Mn_epochs 200 -Mbatch_size 128 -Mdata-new_actions "[('interfere', (50, 50, 2000)), ('sliding', (50, 50, 2000))]" -Mhp-train-finetune_period "(1,200)" -Mhp-train-estimate_inequality_parameters "(1,1)"

You can set the split of few-shot actions using -Mdata-new_actions, and the tuple (50, 50, 2000) represents the number of samples available in training validation and testing.

Generalization to more of fewer players and temporally warped trajectories.

To test the generalization to more or fewer players, as well as temporal warpped trajectories, first train the model on the standard 6v6 games:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1003 --run_name generalization -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mlr 3e-3

Then to generalize to games with 11 players:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_more_players --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'exact'" -Mdata-n_players 11

The number 200 after --eval should be equal to the number of epochs of training. Note that 11 can be replace by any number of players from [3,4,6,8,11].

Similarly, to generalize to temporally warped trajectoryes:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_time_warp --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'all'" -Mdata-n_players 6

Baselines

We also provide the example commands for training all baselines:

STGCN

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1004 --run_name stgcn -Mmodel-name "'STGCN_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

STGCN-LSTM

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1005 --run_name stgcn_lstm -Mmodel-name "'STGCN_LSTM_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

Space-Time Region Graph

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1006 --run_name strg -Mmodel-name "'STRG_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128

Non-Local

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1007 --run_name non_local -Mmodel-name "'NONLOCAL_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128
Owner
Zhezheng Luo
Zhezheng Luo
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022