Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

Overview

TOQ-Nets-PyTorch-Release

Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets

Temporal and Object Quantification Networks
Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, and Tomer D. Ullman
In International Joint Conference on Artificial Intelligence (IJCAI) 2021 (Poster)
[Paper] [Project Page] [BibTex]

@inproceedings{Mao2021Temporal,
    title={{Temporal and Object Quantification Networks}},
    author={Mao, Jiayuan and Luo, Zhezheng and Gan, Chuang and Tenenbaum, Joshua B. and Wu, Jiajun and Kaelbling, Leslie Pack and Ullman, Tomer D.},
    booktitle={International Joint Conferences on Artificial Intelligence},
    year={2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Install Jacinle: Clone the package, and add the bin path to your global PATH environment variable:

git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH

Clone this repository:

git clone https://github.com/vacancy/TOQ-Nets-PyTorch --recursive

Create a conda environment for TOQ-Nets, and install the requirements. This includes the required python packages from both Jacinle TOQ-Nets. Most of the required packages have been included in the built-in anaconda package:

conda create -n nscl anaconda
conda install pytorch torchvision -c pytorch

Dataset preparation

We evaluate our model on four datasets: Soccer Event, RLBench, Toyota Smarthome and Volleyball. To run the experiments, you need to prepare them under NSPCL-Pytorch/data.

Soccer Event

Download link

RLBenck

Download link

Toyota Smarthome

Dataset can be obtained from the website: Toyota Smarthome: Real-World Activities of Daily Living

@InProceedings{Das_2019_ICCV,
    author = {Das, Srijan and Dai, Rui and Koperski, Michal and Minciullo, Luca and Garattoni, Lorenzo and Bremond, Francois and Francesca, Gianpiero},
    title = {Toyota Smarthome: Real-World Activities of Daily Living},
    booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2019}
}

Volleyball

Dataset can be downloaded from this github repo.

@inproceedings{msibrahiCVPR16deepactivity,
  author    = {Mostafa S. Ibrahim and Srikanth Muralidharan and Zhiwei Deng and Arash Vahdat and Greg Mori},
  title     = {A Hierarchical Deep Temporal Model for Group Activity Recognition.},
  booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2016}
}

Training and evaluation.

Standard 9-way classification task

To train the model on the standard 9-way classification task on the soccer dataset:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1001 --run_name 9_way_classification -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mmodel-both_quantify False -Mmodel-depth 0

The hyper parameter estimate_inequality_parameters is to estimate the distribution of input physical features, and is only required when training TOQ-Nets (but not for baselines).

Few-shot actions

To train on regular actions and test on new actions:

jac-crun <gpu_ids> scripts/action_classification_softmax.py  -t 1002 --run_name few_shot -Mdata-name "'TrajectorySingleActionNvN_Wrapper_FewShot_Softmax'" -Mmodel-name "'NLTL_SAv3'" -Mlr 3e-3 -Mn_epochs 200 -Mbatch_size 128 -Mdata-new_actions "[('interfere', (50, 50, 2000)), ('sliding', (50, 50, 2000))]" -Mhp-train-finetune_period "(1,200)" -Mhp-train-estimate_inequality_parameters "(1,1)"

You can set the split of few-shot actions using -Mdata-new_actions, and the tuple (50, 50, 2000) represents the number of samples available in training validation and testing.

Generalization to more of fewer players and temporally warped trajectories.

To test the generalization to more or fewer players, as well as temporal warpped trajectories, first train the model on the standard 6v6 games:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1003 --run_name generalization -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mlr 3e-3

Then to generalize to games with 11 players:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_more_players --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'exact'" -Mdata-n_players 11

The number 200 after --eval should be equal to the number of epochs of training. Note that 11 can be replace by any number of players from [3,4,6,8,11].

Similarly, to generalize to temporally warped trajectoryes:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_time_warp --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'all'" -Mdata-n_players 6

Baselines

We also provide the example commands for training all baselines:

STGCN

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1004 --run_name stgcn -Mmodel-name "'STGCN_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

STGCN-LSTM

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1005 --run_name stgcn_lstm -Mmodel-name "'STGCN_LSTM_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

Space-Time Region Graph

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1006 --run_name strg -Mmodel-name "'STRG_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128

Non-Local

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1007 --run_name non_local -Mmodel-name "'NONLOCAL_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128
Owner
Zhezheng Luo
Zhezheng Luo
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023