[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overview

Chasing Sparsity in Vision Transformers: An End-to-End Exploration

License: MIT

Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Exploration.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Overall Results

Extensive results on ImageNet with diverse ViT backbones validate the effectiveness of our proposals which obtain significantly reduced computational cost and almost unimpaired generalization. Perhaps most surprisingly, we find that the proposed sparse (co-)training can even improve the ViT accuracy rather than compromising it, making sparsity a tantalizing “free lunch”. For example, our sparsified DeiT-Small at (5%, 50%) sparsity for (data, architecture), improves 0.28% top-1 accuracy, and meanwhile enjoys 49.32% FLOPs and 4.40% running time savings.

Proposed Framework of SViTE

Implementations of SViTE

Set Environment

conda create -n vit python=3.6

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

pip install tqdm scipy timm

git clone https://github.com/NVIDIA/apex

cd apex

pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

pip install -v --disable-pip-version-check --no-cache-dir ./

Cmd

Command for unstructured sparsity, i.e., SViTE.

  • SViTE-Small
bash cmd/ vm/0426/vm1.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_small_patch16_224 \
    --epochs 600 \
    --batch-size 64 \
    --data-path ../../imagenet \
    --output_dir ./small_dst_uns_0426_vm1 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 15000 \
    --growth gradient \
    --death magnitude \
    --redistribution none
  • SViTE-Base
bash cmd/ vm/0426/vm3.sh 0,1,2,3,4,5,6,7

Details

CUDA_VISIBLE_DEVICES=$1 \
python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --model deit_base_patch16_224 \
    --epochs 600 \
    --batch-size 128 \
    --data-path ../../imagenet \
    --output_dir ./base_dst_uns_0426_vm3 \
    --dist_url tcp://127.0.0.1:23305 \
    --sparse_init fixed_ERK \
    --density 0.4 \
    --update_frequency 7000 \
    --growth gradient \
    --death magnitude \
    --redistribution none

Remark. More commands can be found under the "cmd" folder.

Command for structured sparsity is comming soon!

Pre-traiend SViTE Models.

  1. SViTE-Base with 40% structural sparsity ACC=82.22

https://www.dropbox.com/s/ix7mmduvf0wlc4b/deit_base_structure_40_82.22.pth?dl=0

  1. SViTE-Base with 40% unstructured sparsity ACC=81.56

https://www.dropbox.com/s/vltm4piwn9cwsop/deit_base_unstructure_40_81.56.pth?dl=0

  1. SViTE-Small with 50% unstructued sparsity and 5% data sparisity ACC=80.18

https://www.dropbox.com/s/kofps21g857wlbt/deit_small_unstructure_50_sparseinput_0.95_80.18.pth?dl=0

  1. SViTE-Small with 50% unstructured sparsity and 10% data sparsity ACC=79.91

https://www.dropbox.com/s/bdhpc6nfrwahcuc/deit_small_unstructure_50_sparseinput_0.90_79.91.pth?dl=0

Citation

@misc{chen2021chasing,
      title={Chasing Sparsity in Vision Transformers:An End-to-End Exploration}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Lu Yuan and Lei Zhang and Zhangyang Wang},
      year={2021},
      eprint={2106.04533},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledge Related Repos

ViT : https://github.com/jeonsworld/ViT-pytorch

ViT : https://github.com/google-research/vision_transformer

Rig : https://github.com/google-research/rigl

DeiT: https://github.com/facebookresearch/deit

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022