[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

Overview

MuVER

This repo contains the code and pre-trained model for our EMNLP 2021 paper:
MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations. Xinyin Ma, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, Weiming Lu

Quick Start

1. Requirements

The requirements for our code are listed in requirements.txt, install the package with the following command:

pip install -r requirements.txt

For huggingface/transformers, we tested it under version 4.1.X and 4.2.X.

2. Download data and model

3. Use the released model to reproduce our results

  • Without View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score

Expected Result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6208 0.7783 0.8592 0.8983 0.9342 0.9533 0.9633 0.9700
lego 0.4904 0.6714 0.7690 0.8357 0.8791 0.9091 0.9208 0.9249
star_trek 0.4743 0.6130 0.6967 0.7606 0.8159 0.8581 0.8805 0.8919
yugioh 0.3432 0.4861 0.6040 0.7004 0.7596 0.8201 0.8512 0.8672
total 0.4496 0.5970 0.6936 0.7658 0.8187 0.8628 0.8854 0.8969
  • With View Merging:
export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --bi_ckpt_path path_to_model/best_zeshel.bin 
    --max_cand_len 40 
    --max_seq_len 128 
    --do_test 
    --test_mode test 
    --data_parallel 
    --eval_batch_size 16
    --accumulate_score
    --view_expansion  
    --merge_layers 4  
    --top_k 0.4

Expected result:

World [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
forgotten_realms 0.6175 0.7867 0.8733 0.9150 0.9375 0.9600 0.9675 0.9708
lego 0.5046 0.6889 0.7882 0.8449 0.8882 0.9183 0.9324 0.9374
star_trek 0.4810 0.6253 0.7121 0.7783 0.8271 0.8706 0.8935 0.9030
yugioh 0.3444 0.5027 0.6322 0.7300 0.7902 0.8429 0.8690 0.8826
total 0.4541 0.6109 0.7136 0.7864 0.8352 0.8777 0.8988 0.9084

Optional Argument:

  • --data_parallel: whether you want to use multiple gpus.
  • --accumulate_score: accumulate score for each entity. Obtain a higher score but will take much time to inference.
  • --view_expansion: whether you want to merge and expand view.
  • --top_k: top_k pairs are expected to merge in each layer.
  • --merge_layers: the number of layers for merging.
  • --test_mode: If you want to generate candidates for train/dev set, change the test_mode to train or dev, which will generate candidates outputs and save it under the directory where you save the test model.

4. How to train your MuVER

We provice the code to train your MuVER. Train the code with the following command:

export PYTHONPATH='.'  
CUDA_VISIBLE_DEVICES=YOUR_GPU_DEVICES python muver/multi_view/train.py 
    --pretrained_model path_to_model/bert-base 
    --epoch 30 
    --train_batch_size 128 
    --learning_rate 1e-5 
    --do_train --do_eval 
    --data_parallel 
    --name distributed_multi_view

Important: Since constrastive learning relies heavily on a large batch size, as reported in our paper, we use eight v100(16g) to train our model. The hyperparameters for our best model are in logs/zeshel_hyper_param.txt

The code will create a directory runtime_log to save the log, model and the hyperparameter you used. Everytime you trained your model(with or without grid search), it will create a directory under runtime_log/name_in_your_args/start_time, e.g., runtime_log/distributed_multi_view/2021-09-07-15-12-21, to store all the checkpoints, curve for visualization and the training log.

A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022