A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

Related tags

Deep LearningRSG
Overview

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021)

A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets". RSG (Rare-class Sample Generator) is a flexible module that can generate rare-class samples during training and can be combined with any backbone network. RSG is only used in the training phase, so it will not bring additional burdens to the backbone network in the testing phase.

How to use RSG in your own networks

  1. Initialize RSG module:

    from RSG import *
    
    # n_center: The number of centers, e.g., 15.
    # feature_maps_shape: The shape of input feature maps (channel, width, height), e.g., [32, 16, 16].
    # num_classes: The number of classes, e.g., 10.
    # contrastive_module_dim: The dimention of the contrastive module, e.g., 256.
    # head_class_lists: The index of head classes, e.g., [0, 1, 2].
    # transfer_strength: Transfer strength, e.g., 1.0.
    # epoch_thresh: The epoch index when rare-class samples are generated: e.g., 159.
    
    self.RSG = RSG(n_center = 15, feature_maps_shape = [32, 16, 16], num_classes=10, contrastive_module_dim = 256, head_class_lists = [0, 1, 2], transfer_strength = 1.0, epoch_thresh = 159)
    
    
  2. Use RSG in the forward pass during training:

    out = self.layer2(out)
    
    # feature_maps: The input feature maps.
    # head_class_lists: The index of head classes.
    # target: The label of samples.
    # epoch: The current index of epoch.
    
    if phase_train == True:
      out, cesc_total, loss_mv_total, combine_target = self.RSG.forward(feature_maps = out, head_class_lists = [0, 1, 2], target = target, epoch = epoch)
     
    out = self.layer3(out) 
    

The two loss terms, namely ''cesc_total'' and ''loss_mv_total'', will be returned and combined with cross-entropy loss for backpropagation. More examples and details can be found in the models in the directory ''Imbalanced_Classification/models''.

How to train

Some examples:

Go into the "Imbalanced_Classification" directory.

  1. To reimplement the result of ResNet-32 on long-tailed CIFAR-10 ($\rho$ = 100) with RSG and LDAM-DRW:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type exp --imb_factor 0.01 --loss_type LDAM --train_rule DRW
    
  2. To reimplement the result of ResNet-32 on step CIFAR-10 ($\rho$ = 50) with RSG and Focal loss:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type step --imb_factor 0.02 --loss_type Focal --train_rule None
    
  3. To run experiments on iNaturalist 2018, Places-LT, or ImageNet-LT:

    Firstly, please prepare datasets and their corresponding list files. For the convenience, we provide the list files in Google Drive and Baidu Disk.

    Google Drive Baidu Disk
    download download (code: q3dk)

    To train the model:

    python inaturalist_train.py
    

    or

    python places_train.py
    

    or

    python imagenet_lt_train.py
    

    As for Places-LT or ImageNet-LT, the model is trained on the training set, and the best model on the validation set will be saved for testing. The "places_test.py" and 'imagenet_lt_test.py' are used for testing.

Citation

@inproceedings{Jianfeng2021RSG,
  title = {RSG: A Simple but Effective Module for Learning Imbalanced Datasets},
  author = {Jianfeng Wang and Thomas Lukasiewicz and Xiaolin Hu and Jianfei Cai and Zhenghua Xu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021