A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

Related tags

Deep LearningRSG
Overview

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021)

A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets". RSG (Rare-class Sample Generator) is a flexible module that can generate rare-class samples during training and can be combined with any backbone network. RSG is only used in the training phase, so it will not bring additional burdens to the backbone network in the testing phase.

How to use RSG in your own networks

  1. Initialize RSG module:

    from RSG import *
    
    # n_center: The number of centers, e.g., 15.
    # feature_maps_shape: The shape of input feature maps (channel, width, height), e.g., [32, 16, 16].
    # num_classes: The number of classes, e.g., 10.
    # contrastive_module_dim: The dimention of the contrastive module, e.g., 256.
    # head_class_lists: The index of head classes, e.g., [0, 1, 2].
    # transfer_strength: Transfer strength, e.g., 1.0.
    # epoch_thresh: The epoch index when rare-class samples are generated: e.g., 159.
    
    self.RSG = RSG(n_center = 15, feature_maps_shape = [32, 16, 16], num_classes=10, contrastive_module_dim = 256, head_class_lists = [0, 1, 2], transfer_strength = 1.0, epoch_thresh = 159)
    
    
  2. Use RSG in the forward pass during training:

    out = self.layer2(out)
    
    # feature_maps: The input feature maps.
    # head_class_lists: The index of head classes.
    # target: The label of samples.
    # epoch: The current index of epoch.
    
    if phase_train == True:
      out, cesc_total, loss_mv_total, combine_target = self.RSG.forward(feature_maps = out, head_class_lists = [0, 1, 2], target = target, epoch = epoch)
     
    out = self.layer3(out) 
    

The two loss terms, namely ''cesc_total'' and ''loss_mv_total'', will be returned and combined with cross-entropy loss for backpropagation. More examples and details can be found in the models in the directory ''Imbalanced_Classification/models''.

How to train

Some examples:

Go into the "Imbalanced_Classification" directory.

  1. To reimplement the result of ResNet-32 on long-tailed CIFAR-10 ($\rho$ = 100) with RSG and LDAM-DRW:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type exp --imb_factor 0.01 --loss_type LDAM --train_rule DRW
    
  2. To reimplement the result of ResNet-32 on step CIFAR-10 ($\rho$ = 50) with RSG and Focal loss:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type step --imb_factor 0.02 --loss_type Focal --train_rule None
    
  3. To run experiments on iNaturalist 2018, Places-LT, or ImageNet-LT:

    Firstly, please prepare datasets and their corresponding list files. For the convenience, we provide the list files in Google Drive and Baidu Disk.

    Google Drive Baidu Disk
    download download (code: q3dk)

    To train the model:

    python inaturalist_train.py
    

    or

    python places_train.py
    

    or

    python imagenet_lt_train.py
    

    As for Places-LT or ImageNet-LT, the model is trained on the training set, and the best model on the validation set will be saved for testing. The "places_test.py" and 'imagenet_lt_test.py' are used for testing.

Citation

@inproceedings{Jianfeng2021RSG,
  title = {RSG: A Simple but Effective Module for Learning Imbalanced Datasets},
  author = {Jianfeng Wang and Thomas Lukasiewicz and Xiaolin Hu and Jianfei Cai and Zhenghua Xu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021