Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Related tags

Deep LearningRNW
Overview

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Kun Wang, Zhenyu Zhang, Zhiqiang Yan, Xiang Li, Baobei Xu, Jun Li and Jian Yang

PCA Lab, Nanjing University of Science and Technology; Tencent YouTu Lab; Hikvision Research Institute

Introduction

This is the official repository for Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark. You can find our paper at arxiv. In this repository, we release the training and testing code, as well as the data split files of RobotCar-Night and nuScenes-Night.

image-20211002220051137

Dependency

  • python>=3.6
  • torch>=1.7.1
  • torchvision>=0.8.2
  • mmcv>=1.3
  • pytorch-lightning>=1.4.5
  • opencv-python>=3.4
  • tqdm>=4.53

Dataset

The dataset used in our work is based on RobotCar and nuScenes. Please visit their official website to download the data (We only used a part of these datasets. If you just want to run the code, (2014-12-16-18-44-24, 2014-12-09-13-21-02) of RobotCar and (Package 01, 02, 05, 09, 10) of nuScenes is enough). To produce the ground truth depth, you can use the above official toolboxes. After preparing datasets, we strongly recommend you to organize the directory structure as follows. The split files are provided in split_files/.

RobotCar-Night root directory
|__Package name (e.g. 2014-12-16-18-44-24)
   |__depth (to store the .npy ground truth depth maps)
      |__ground truth depth files
   |__rgb (to store the .png color images)
      |__color image files
   |__intrinsic.npy (to store the camera intrinsics)
   |__test_split.txt (to store the test samples)
   |__train_split.txt (to store the train samples)
nuScenes-Night root directory
|__sequences (to store sequence data)
   |__video clip number (e.g. 00590cbfa24a430a8c274b51e1c71231)
      |__file_list.txt (to store the image file names in this video clip)
      |__intrinsic.npy (to store the camera intrinsic of this video clip)
      |__image files described in file_list.txt
|__splits (to store split files)
   |__split files with name (day/night)_(train/test)_split.txt
|__test
   |__color (to store color images for testing)
   |__gt (to store ground truth depth maps w.r.t color)

Note: You also need to configure the dataset path in datasets/common.py. The original resolution of nuScenes is too high, so we reduce its resolution to half when training.

Training

Our model is trained using Distributed Data Parallel supported by Pytorch-Lightning. You can train a RNW model on one dataset through the following two steps:

  1. Train a self-supervised model on daytime data, by

    python train.py mono2_(rc/ns)_day number_of_your_gpus
  2. Train RNW by

    python train.py rnw_(rc/ns) number_of_your_gpus

Since there is no eval split, checkpoints will be saved every two epochs.

Testing

You can run the following commands to test on RobotCar-Night

python test_robotcar_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_robotcar.py day/night

To test on nuScenes-Night, you can run

python test_nuscenes_disp.py day/night config_name checkpoint_path
cd evaluation
python eval_nuscenes.py day/night

Besides, you can use the scripts batch_eval_robotcar.py and batch_eval_nuscenes.py to automatically execute the above commands.

Citation

If you find our work useful, please consider citing our paper

@InProceedings{Wang_2021_ICCV,
    author    = {Wang, Kun and Zhang, Zhenyu and Yan, Zhiqiang and Li, Xiang and Xu, Baobei and Li, Jun and Yang, Jian},
    title     = {Regularizing Nighttime Weirdness: Efficient Self-Supervised Monocular Depth Estimation in the Dark},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {16055-16064}
}
Owner
kunwang
kunwang
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020