FLVIS: Feedback Loop Based Visual Initial SLAM

Related tags

Deep LearningFLVIS
Overview

FLVIS

Feedback Loop Based Visual Inertial SLAM

1-Video

cla

EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform

2-Relevent Publication:

Under Review, a pre-print version can be found here

3-Support Hardware/Dataset:

Intel RealSense D435i Camera
EuRoC MAV Dataset

4-Build The Project

We have tested in the following environment:
Ubuntu 16.04 + ROS Kinetic
Ubuntu 18.04 + ROS melodic
Clone the repository to the catkin work space eg. /catkin_ws/src

git clone https://github.com/Ttoto/FLVIS.git

Install 3rd Part library

cd catkin_ws/src/FLVIS/3rdPartLib/
./install3rdPartLib.sh

Compile

cd ~/catkin_ws
catkin_make

5-Verification

5.1 D435i Camera Depth Mode

5.1.1 Use our recorded rosbag

Download the dataset Link-melab_sn943222072828.bag to /bag folder
Decompress the rosbag:

rosbag decompress melab_sn943222072828.bag

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_bag.launch
5.1.2 Use your own camera:

Install the realsense driver and its ros wrapper
Boot the d435i camera and echo the camera infomation

roslaunch flvis d435i_depth.launch
rostopic echo /camera/infra1/camera_info

You will get the camera infomation like: As shown, where the resolution is 640x480 and fx=384.16455078125; fy=384.16455078125; cx=320.2144470214844;cy=238.94403076171875.
Edit these information in the config yaml file (say: /launch/d435i/sn943222072828_depth.yaml):

image_width: 640
image_height: 480
cam0_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam0_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2

In the launch file "flvis_d435i.launch", make sure "/yamlconfigfile" is point to the edited config file

<param name="/yamlconfigfile" type="string" value="$(find flvis)/launch/d435i/sn943222072828_depth.yaml"/>

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_d435i_depth.launch

5.2 D435i Camera Stero Mode

Like what we did in 5.1.2, we need to config the sn943222072828_stereo.yaml
Note that, by default the two camera share the same intrinsic parameters, and the baseline length is 0.05m:

cam0_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam0_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2
cam1_intrinsics: [384.16455078125, 384.16455078125, 320.2144470214844, 238.94403076171875]#fx fy cx cy
cam1_distortion_coeffs: [0.0, 0.0, 0.0, 0.0]#k1 k2 r1 r2
T_cam0_cam1:
[ 1.0,  0.0,  0.0,  0.05,
  0.0,  1.0,  0.0,  0.0,
  0.0,  0.0,  1.0,  0.0,
  0.0,  0.0,  0.0,  1.0]

5.3 EuRoC MAV Dataset

Download the dataset(say MH_05_difficult) into the bag folder:

roscd flvis/bag/
wget http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_05_difficult/MH_05_difficult.bag

Edit the corresponding bag name in flvis_euroc_mav.launch file:

<node pkg="rosbag" type="play" name="rosbag" args="$(find flvis)/bag/MH_05_difficult.bag"/>

run the following launch files:

roslaunch flvis rviz.launch
roslaunch flvis flvis_euroc_mav.launch

Maintainer:

Shengyang Chen(Dept.ME,PolyU): [email protected]
Yajing Zou(Dept.LSGI,PolyU):[email protected]

Owner
UAV Lab - HKPolyU
The UAV Lab of The Hong Kong Polytechnic University
UAV Lab - HKPolyU
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
RobustVideoMatting and background composing in one model by using onnxruntime.

RVM_onnx_compose RobustVideoMatting and background composing in one model by using onnxruntime. Usage pip install -r requirements.txt python infer_cam

Quantum Liu 4 Apr 07, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Code and training data for our ECCV 2016 paper on Unsupervised Learning

Shuffle and Learn (Shuffle Tuple) Created by Ishan Misra Based on the ECCV 2016 Paper - "Shuffle and Learn: Unsupervised Learning using Temporal Order

Ishan Misra 44 Dec 08, 2021
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022