[arXiv] What-If Motion Prediction for Autonomous Driving β“πŸš—πŸ’¨

Overview

WIMP - What If Motion Predictor

Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations]

Setup

Requirements

The WIMP reference implementation and setup procedure has been tested to work with Ubuntu 16.04+ and has the following requirements:

  1. python >= 3.7
  2. pytorch >= 1.5.0

Installing Dependencies

  1. Install remaining required Python dependencies using pip.

    pip install -r requirements.txt
  2. Install the Argoverse API module into the local Python environment by following steps 1, 2, and 4 in the README.

Argoverse Data

In order to set up the Argoverse dataset for training and evaluation, follow the steps below:

  1. Download the the Argoverse Motion Forecasting v1.1 dataset and extract the compressed data subsets such that the raw CSV files are stored in the following directory structure:

    β”œβ”€β”€ WIMP
    β”‚   β”œβ”€β”€ src
    β”‚   β”œβ”€β”€ scripts
    β”‚   β”œβ”€β”€ data
    β”‚   β”‚   β”œβ”€β”€ argoverse_raw
    β”‚   β”‚   β”‚   β”œβ”€β”€ train
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    β”‚   β”‚   β”‚   β”œβ”€β”€ val
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    β”‚   β”‚   β”‚   β”œβ”€β”€ test
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    
  2. Pre-process the raw Argoverse data into a WIMP-compatible format by running the following script. It should be noted that the Argoverse dataset is quite large and this script may take a few hours to run on a multi-threaded machine.

    python scripts/run_preprocess.py --dataroot ./data/argoverse_raw/ \
    --mode val --save-dir ./data/argoverse_processed --social-features \
    --map-features --xy-features --normalize --extra-map-features \
    --compute-all --generate-candidate-centerlines 6

Usage

For a detailed description of all possible configuration arguments, please run scripts with the -h flag.

Training

To train WIMP from scratch using a configuration similar to that reported in the paper, run a variant of the following command:

python src/main.py --mode train --dataroot ./data/argoverse_processed --IFC \
--lr 0.0001 --weight-decay 0.0 --non-linearity relu  --use-centerline-features \
--segment-CL-Encoder-Prob --num-mixtures 6 --output-conv --output-prediction \
--gradient-clipping --hidden-key-generator --k-value-threshold 10 \
--scheduler-step-size 60 90 120 150 180  --distributed-backend ddp \
--experiment-name example --gpus 4 --batch-size 25

Citing

If you've found this code to be useful, please consider citing our paper!

@article{khandelwal2020if,
  title={What-If Motion Prediction for Autonomous Driving},
  author={Khandelwal, Siddhesh and Qi, William and Singh, Jagjeet and Hartnett, Andrew and Ramanan, Deva},
  journal={arXiv preprint arXiv:2008.10587},
  year={2020}
}

Questions

This repo is maintained by William Qi and Siddhesh Khandelwal - please feel free to reach out or open an issue if you have additional questions/concerns.

We plan to clean up the codebase and add some additional utilities (possibly NuScenes data loaders and inference/visualization tools) in the near future, but don't expect to make significant breaking changes.

Comments
  • Pandas Error runpreprocess.py

    Pandas Error runpreprocess.py

    Hello! First of all, thank you for making your code available for the readers of your great paper. I am having an issue while running run_preprocess.py. I think while reading the csv something goes wrong since my error is a pandas error. When I try to run the script, it gives me: KeyError: 'CITY_NAME' When I go to the script and give "MIA" as the CITY_NAME, just to see what happens, I receive a similar error: KeyError: 'OBJECT_TYPE' I checked the paths for the data. It seems fine. What could be the reason? Thank you!

    opened by ahmetgurhan 0
  • Loss dimensions

    Loss dimensions

    Hi, thank you so much for your fantastic work.

    Which is the order, and the dimensions, in this function?

    def l1_ewta_loss(prediction, target, k=6, eps=1e-7, mr=2.0):
        num_mixtures = prediction.shape[1]
    
        target = target.unsqueeze(1).expand(-1, num_mixtures, -1, -1)
        l1_loss = nn.functional.l1_loss(prediction, target, reduction='none').sum(dim=[2, 3])
    
        # Get loss from top-k mixtures for each timestep
        mixture_loss_sorted, mixture_ranks = torch.sort(l1_loss, descending=False)
        mixture_loss_topk = mixture_loss_sorted.narrow(1, 0, k)
    
        # Aggregate loss across timesteps and batch
        loss = mixture_loss_topk.sum()
        loss = loss / target.size(0)
        loss = loss / target.size(2)
        loss = loss / k
        return loss
    

    I am not able to obtain good results compared to NLL. I have as inputs:

    predictions: batch_size x num_modes x pred_len x data_dim (e.g. 1024 x 6 x 30 x 2) gt: batch_size x pred_len x data_dim (e.g. 1024 x 30 x 2)

    Is this correct?

    opened by Cram3r95 0
  • Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Hey there,

    I want to reproduce the results of your ablation study, where you only used Social-Context with EWTA-Loss.

    image

    However, I habe problems training the model only with social context. What are the correct flags I need to set for preprocessing (run_preprocess.py) and for training (main.py)?

    Looking forward hearing from you soon!

    Best regards

    SchDevel

    opened by SchDevel 2
  • Can I get your inference/visualization code?

    Can I get your inference/visualization code?

    Hi, first of all, thanks for your awesome work and sharing that to us.

    I tried to make inference/visualization code by myself, unfortunately, there were some problems.

    Maybe library's mismatching, my insufficient coding skills, or something else.

    So, can i get your inference/visualization code or even skeleton base code?

    opened by raspbe34 3
  • What is the method for incomplete trajectories?

    What is the method for incomplete trajectories?

    Hi, thanks for sharing your great work~ I am wondering how you deal with the incomplete trajectories problem (agents have less then 2 seconds of history).

    1. I notice that for the neighboring agent wrt focal agent, you discard all the agents (code) if their trajectories are not complete
    2. how would you deal with those incomplete trajectories for the focal agent? Did you use interpolation or some techniques?

    Thanks!

    opened by XHwind 0
Releases(1.0)
Owner
William Qi
Prediction @argoai
William Qi
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
γ€ŠUnsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Ensemble Visual-Inertial Odometry (EnVIO)

Ensemble Visual-Inertial Odometry (EnVIO) Authors : Jae Hyung Jung, Yeongkwon Choe, and Chan Gook Park 1. Overview This is a ROS package of Ensemble V

Jae Hyung Jung 95 Jan 03, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022