[arXiv] What-If Motion Prediction for Autonomous Driving β“πŸš—πŸ’¨

Overview

WIMP - What If Motion Predictor

Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations]

Setup

Requirements

The WIMP reference implementation and setup procedure has been tested to work with Ubuntu 16.04+ and has the following requirements:

  1. python >= 3.7
  2. pytorch >= 1.5.0

Installing Dependencies

  1. Install remaining required Python dependencies using pip.

    pip install -r requirements.txt
  2. Install the Argoverse API module into the local Python environment by following steps 1, 2, and 4 in the README.

Argoverse Data

In order to set up the Argoverse dataset for training and evaluation, follow the steps below:

  1. Download the the Argoverse Motion Forecasting v1.1 dataset and extract the compressed data subsets such that the raw CSV files are stored in the following directory structure:

    β”œβ”€β”€ WIMP
    β”‚   β”œβ”€β”€ src
    β”‚   β”œβ”€β”€ scripts
    β”‚   β”œβ”€β”€ data
    β”‚   β”‚   β”œβ”€β”€ argoverse_raw
    β”‚   β”‚   β”‚   β”œβ”€β”€ train
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    β”‚   β”‚   β”‚   β”œβ”€β”€ val
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    β”‚   β”‚   β”‚   β”œβ”€β”€ test
    β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ *.csv
    
  2. Pre-process the raw Argoverse data into a WIMP-compatible format by running the following script. It should be noted that the Argoverse dataset is quite large and this script may take a few hours to run on a multi-threaded machine.

    python scripts/run_preprocess.py --dataroot ./data/argoverse_raw/ \
    --mode val --save-dir ./data/argoverse_processed --social-features \
    --map-features --xy-features --normalize --extra-map-features \
    --compute-all --generate-candidate-centerlines 6

Usage

For a detailed description of all possible configuration arguments, please run scripts with the -h flag.

Training

To train WIMP from scratch using a configuration similar to that reported in the paper, run a variant of the following command:

python src/main.py --mode train --dataroot ./data/argoverse_processed --IFC \
--lr 0.0001 --weight-decay 0.0 --non-linearity relu  --use-centerline-features \
--segment-CL-Encoder-Prob --num-mixtures 6 --output-conv --output-prediction \
--gradient-clipping --hidden-key-generator --k-value-threshold 10 \
--scheduler-step-size 60 90 120 150 180  --distributed-backend ddp \
--experiment-name example --gpus 4 --batch-size 25

Citing

If you've found this code to be useful, please consider citing our paper!

@article{khandelwal2020if,
  title={What-If Motion Prediction for Autonomous Driving},
  author={Khandelwal, Siddhesh and Qi, William and Singh, Jagjeet and Hartnett, Andrew and Ramanan, Deva},
  journal={arXiv preprint arXiv:2008.10587},
  year={2020}
}

Questions

This repo is maintained by William Qi and Siddhesh Khandelwal - please feel free to reach out or open an issue if you have additional questions/concerns.

We plan to clean up the codebase and add some additional utilities (possibly NuScenes data loaders and inference/visualization tools) in the near future, but don't expect to make significant breaking changes.

Comments
  • Pandas Error runpreprocess.py

    Pandas Error runpreprocess.py

    Hello! First of all, thank you for making your code available for the readers of your great paper. I am having an issue while running run_preprocess.py. I think while reading the csv something goes wrong since my error is a pandas error. When I try to run the script, it gives me: KeyError: 'CITY_NAME' When I go to the script and give "MIA" as the CITY_NAME, just to see what happens, I receive a similar error: KeyError: 'OBJECT_TYPE' I checked the paths for the data. It seems fine. What could be the reason? Thank you!

    opened by ahmetgurhan 0
  • Loss dimensions

    Loss dimensions

    Hi, thank you so much for your fantastic work.

    Which is the order, and the dimensions, in this function?

    def l1_ewta_loss(prediction, target, k=6, eps=1e-7, mr=2.0):
        num_mixtures = prediction.shape[1]
    
        target = target.unsqueeze(1).expand(-1, num_mixtures, -1, -1)
        l1_loss = nn.functional.l1_loss(prediction, target, reduction='none').sum(dim=[2, 3])
    
        # Get loss from top-k mixtures for each timestep
        mixture_loss_sorted, mixture_ranks = torch.sort(l1_loss, descending=False)
        mixture_loss_topk = mixture_loss_sorted.narrow(1, 0, k)
    
        # Aggregate loss across timesteps and batch
        loss = mixture_loss_topk.sum()
        loss = loss / target.size(0)
        loss = loss / target.size(2)
        loss = loss / k
        return loss
    

    I am not able to obtain good results compared to NLL. I have as inputs:

    predictions: batch_size x num_modes x pred_len x data_dim (e.g. 1024 x 6 x 30 x 2) gt: batch_size x pred_len x data_dim (e.g. 1024 x 30 x 2)

    Is this correct?

    opened by Cram3r95 0
  • Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Hey there,

    I want to reproduce the results of your ablation study, where you only used Social-Context with EWTA-Loss.

    image

    However, I habe problems training the model only with social context. What are the correct flags I need to set for preprocessing (run_preprocess.py) and for training (main.py)?

    Looking forward hearing from you soon!

    Best regards

    SchDevel

    opened by SchDevel 2
  • Can I get your inference/visualization code?

    Can I get your inference/visualization code?

    Hi, first of all, thanks for your awesome work and sharing that to us.

    I tried to make inference/visualization code by myself, unfortunately, there were some problems.

    Maybe library's mismatching, my insufficient coding skills, or something else.

    So, can i get your inference/visualization code or even skeleton base code?

    opened by raspbe34 3
  • What is the method for incomplete trajectories?

    What is the method for incomplete trajectories?

    Hi, thanks for sharing your great work~ I am wondering how you deal with the incomplete trajectories problem (agents have less then 2 seconds of history).

    1. I notice that for the neighboring agent wrt focal agent, you discard all the agents (code) if their trajectories are not complete
    2. how would you deal with those incomplete trajectories for the focal agent? Did you use interpolation or some techniques?

    Thanks!

    opened by XHwind 0
Releases(1.0)
Owner
William Qi
Prediction @argoai
William Qi
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes StΓ€rk 95 Dec 30, 2022