Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

Overview

LitMatter

A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs.

How to use

  1. Clone this repository and start editing, or save it and use it as a template for new projects.
  2. Edit lit_models/models.py with the PyTorch code for your model of interest.
  3. Edit lit_data/data.py to load and process your PyTorch datasets.
  4. Perform interactive experiments in prototyping.py.
  5. Scale network training to any number of GPUs using the example batch scripts.

Principles

LitMatter uses PyTorch Lightning to organize PyTorch code so scientists can rapidly experiment with geometric deep learning and scale up to hundreds of GPUs without difficulty. Many amazing applied ML methods (even those with open-source code) are never used by the wider community because the important details are buried in hundreds of lines of boilerplate code. It may require a significant engineering effort to get the method working on a new dataset and in a different computing environment, and it can be hard to justify this effort before verifying that the method will provide some advantage. Packaging your code with the LitMatter template makes it easy for other researchers to experiment with your models and scale them beyond common benchmark datasets.

Features

  • Maximum flexibility. LitMatter supports arbitrary PyTorch models and dataloaders.
  • Eliminate boilerplate. Engineering code is abstracted away, but still accessible if needed.
  • Full end-to-end pipeline. Data processing, model construction, training, and inference can be launched from the command line, in a Jupyter notebook, or through a SLURM job.
  • Lightweight. Using the template is easier than not using it; it reduces infrastructure overhead for simple and complex deep learning projects.

Examples

The example notebooks show how to use LitMatter to scale model training for different applications.

  • Prototyping GNNs - train an equivariant graph neural network to predict quantum properties of small molecules.
  • Neural Force Fields - train a neural force field on molecular dynamics trajectories of small molecules.
  • DeepChem - train a PyTorch model in DeepChem on a MoleculeNet dataset.
  • 🤗 - train a 🤗 language model to generate molecules.

Note that these examples have additional dependencies beyond the core depdencies of LitMatter.

References

If you use LitMatter for your own research and scaling experiments, please cite the following work: Frey, Nathan C., et al. "Scalable Geometric Deep Learning on Molecular Graphs." NeurIPS 2021 AI for Science Workshop. 2021.

@inproceedings{frey2021scalable,
  title={Scalable Geometric Deep Learning on Molecular Graphs},
  author={Frey, Nathan C and Samsi, Siddharth and McDonald, Joseph and Li, Lin and Coley, Connor W and Gadepally, Vijay},
  booktitle={NeurIPS 2021 AI for Science Workshop},
  year={2021}
}

Please also cite the relevant frameworks: PyG, PyTorch Distributed, PyTorch Lightning,

and any extensions you use: 🤗 , DeepChem, NFFs, etc.

Extensions

When you're ready to upgrade to fully configurable, reproducible, and scalable workflows, use hydra-zen. hydra-zen integrates seamlessly with LitMatter to self-document ML experiments and orchestrate multiple training runs for extensive hyperparameter sweeps.

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

© 2021 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Subject to FAR 52.227-11 – Patent Rights – Ownership by the Contractor (May 2014)
SPDX-License-Identifier: MIT

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

The software/firmware is provided to you on an As-Is basis.

Owner
Nathan Frey
Postdoc at MIT
Nathan Frey
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Ian Covert 130 Jan 01, 2023
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Turning SymPy expressions into JAX functions

sympy2jax Turn SymPy expressions into parametrized, differentiable, vectorizable, JAX functions. All SymPy floats become trainable input parameters. S

Miles Cranmer 38 Dec 11, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022