Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

Overview

LitMatter

A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs.

How to use

  1. Clone this repository and start editing, or save it and use it as a template for new projects.
  2. Edit lit_models/models.py with the PyTorch code for your model of interest.
  3. Edit lit_data/data.py to load and process your PyTorch datasets.
  4. Perform interactive experiments in prototyping.py.
  5. Scale network training to any number of GPUs using the example batch scripts.

Principles

LitMatter uses PyTorch Lightning to organize PyTorch code so scientists can rapidly experiment with geometric deep learning and scale up to hundreds of GPUs without difficulty. Many amazing applied ML methods (even those with open-source code) are never used by the wider community because the important details are buried in hundreds of lines of boilerplate code. It may require a significant engineering effort to get the method working on a new dataset and in a different computing environment, and it can be hard to justify this effort before verifying that the method will provide some advantage. Packaging your code with the LitMatter template makes it easy for other researchers to experiment with your models and scale them beyond common benchmark datasets.

Features

  • Maximum flexibility. LitMatter supports arbitrary PyTorch models and dataloaders.
  • Eliminate boilerplate. Engineering code is abstracted away, but still accessible if needed.
  • Full end-to-end pipeline. Data processing, model construction, training, and inference can be launched from the command line, in a Jupyter notebook, or through a SLURM job.
  • Lightweight. Using the template is easier than not using it; it reduces infrastructure overhead for simple and complex deep learning projects.

Examples

The example notebooks show how to use LitMatter to scale model training for different applications.

  • Prototyping GNNs - train an equivariant graph neural network to predict quantum properties of small molecules.
  • Neural Force Fields - train a neural force field on molecular dynamics trajectories of small molecules.
  • DeepChem - train a PyTorch model in DeepChem on a MoleculeNet dataset.
  • 🤗 - train a 🤗 language model to generate molecules.

Note that these examples have additional dependencies beyond the core depdencies of LitMatter.

References

If you use LitMatter for your own research and scaling experiments, please cite the following work: Frey, Nathan C., et al. "Scalable Geometric Deep Learning on Molecular Graphs." NeurIPS 2021 AI for Science Workshop. 2021.

@inproceedings{frey2021scalable,
  title={Scalable Geometric Deep Learning on Molecular Graphs},
  author={Frey, Nathan C and Samsi, Siddharth and McDonald, Joseph and Li, Lin and Coley, Connor W and Gadepally, Vijay},
  booktitle={NeurIPS 2021 AI for Science Workshop},
  year={2021}
}

Please also cite the relevant frameworks: PyG, PyTorch Distributed, PyTorch Lightning,

and any extensions you use: 🤗 , DeepChem, NFFs, etc.

Extensions

When you're ready to upgrade to fully configurable, reproducible, and scalable workflows, use hydra-zen. hydra-zen integrates seamlessly with LitMatter to self-document ML experiments and orchestrate multiple training runs for extensive hyperparameter sweeps.

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

© 2021 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Subject to FAR 52.227-11 – Patent Rights – Ownership by the Contractor (May 2014)
SPDX-License-Identifier: MIT

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

The software/firmware is provided to you on an As-Is basis.

Owner
Nathan Frey
Postdoc at MIT
Nathan Frey
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022