Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

Overview

LitMatter

A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs.

How to use

  1. Clone this repository and start editing, or save it and use it as a template for new projects.
  2. Edit lit_models/models.py with the PyTorch code for your model of interest.
  3. Edit lit_data/data.py to load and process your PyTorch datasets.
  4. Perform interactive experiments in prototyping.py.
  5. Scale network training to any number of GPUs using the example batch scripts.

Principles

LitMatter uses PyTorch Lightning to organize PyTorch code so scientists can rapidly experiment with geometric deep learning and scale up to hundreds of GPUs without difficulty. Many amazing applied ML methods (even those with open-source code) are never used by the wider community because the important details are buried in hundreds of lines of boilerplate code. It may require a significant engineering effort to get the method working on a new dataset and in a different computing environment, and it can be hard to justify this effort before verifying that the method will provide some advantage. Packaging your code with the LitMatter template makes it easy for other researchers to experiment with your models and scale them beyond common benchmark datasets.

Features

  • Maximum flexibility. LitMatter supports arbitrary PyTorch models and dataloaders.
  • Eliminate boilerplate. Engineering code is abstracted away, but still accessible if needed.
  • Full end-to-end pipeline. Data processing, model construction, training, and inference can be launched from the command line, in a Jupyter notebook, or through a SLURM job.
  • Lightweight. Using the template is easier than not using it; it reduces infrastructure overhead for simple and complex deep learning projects.

Examples

The example notebooks show how to use LitMatter to scale model training for different applications.

  • Prototyping GNNs - train an equivariant graph neural network to predict quantum properties of small molecules.
  • Neural Force Fields - train a neural force field on molecular dynamics trajectories of small molecules.
  • DeepChem - train a PyTorch model in DeepChem on a MoleculeNet dataset.
  • 🤗 - train a 🤗 language model to generate molecules.

Note that these examples have additional dependencies beyond the core depdencies of LitMatter.

References

If you use LitMatter for your own research and scaling experiments, please cite the following work: Frey, Nathan C., et al. "Scalable Geometric Deep Learning on Molecular Graphs." NeurIPS 2021 AI for Science Workshop. 2021.

@inproceedings{frey2021scalable,
  title={Scalable Geometric Deep Learning on Molecular Graphs},
  author={Frey, Nathan C and Samsi, Siddharth and McDonald, Joseph and Li, Lin and Coley, Connor W and Gadepally, Vijay},
  booktitle={NeurIPS 2021 AI for Science Workshop},
  year={2021}
}

Please also cite the relevant frameworks: PyG, PyTorch Distributed, PyTorch Lightning,

and any extensions you use: 🤗 , DeepChem, NFFs, etc.

Extensions

When you're ready to upgrade to fully configurable, reproducible, and scalable workflows, use hydra-zen. hydra-zen integrates seamlessly with LitMatter to self-document ML experiments and orchestrate multiple training runs for extensive hyperparameter sweeps.

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

© 2021 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Subject to FAR 52.227-11 – Patent Rights – Ownership by the Contractor (May 2014)
SPDX-License-Identifier: MIT

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

The software/firmware is provided to you on an As-Is basis.

Owner
Nathan Frey
Postdoc at MIT
Nathan Frey
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022