Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

Overview

LitMatter

A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs.

How to use

  1. Clone this repository and start editing, or save it and use it as a template for new projects.
  2. Edit lit_models/models.py with the PyTorch code for your model of interest.
  3. Edit lit_data/data.py to load and process your PyTorch datasets.
  4. Perform interactive experiments in prototyping.py.
  5. Scale network training to any number of GPUs using the example batch scripts.

Principles

LitMatter uses PyTorch Lightning to organize PyTorch code so scientists can rapidly experiment with geometric deep learning and scale up to hundreds of GPUs without difficulty. Many amazing applied ML methods (even those with open-source code) are never used by the wider community because the important details are buried in hundreds of lines of boilerplate code. It may require a significant engineering effort to get the method working on a new dataset and in a different computing environment, and it can be hard to justify this effort before verifying that the method will provide some advantage. Packaging your code with the LitMatter template makes it easy for other researchers to experiment with your models and scale them beyond common benchmark datasets.

Features

  • Maximum flexibility. LitMatter supports arbitrary PyTorch models and dataloaders.
  • Eliminate boilerplate. Engineering code is abstracted away, but still accessible if needed.
  • Full end-to-end pipeline. Data processing, model construction, training, and inference can be launched from the command line, in a Jupyter notebook, or through a SLURM job.
  • Lightweight. Using the template is easier than not using it; it reduces infrastructure overhead for simple and complex deep learning projects.

Examples

The example notebooks show how to use LitMatter to scale model training for different applications.

  • Prototyping GNNs - train an equivariant graph neural network to predict quantum properties of small molecules.
  • Neural Force Fields - train a neural force field on molecular dynamics trajectories of small molecules.
  • DeepChem - train a PyTorch model in DeepChem on a MoleculeNet dataset.
  • ๐Ÿค— - train a ๐Ÿค— language model to generate molecules.

Note that these examples have additional dependencies beyond the core depdencies of LitMatter.

References

If you use LitMatter for your own research and scaling experiments, please cite the following work: Frey, Nathan C., et al. "Scalable Geometric Deep Learning on Molecular Graphs." NeurIPS 2021 AI for Science Workshop. 2021.

@inproceedings{frey2021scalable,
  title={Scalable Geometric Deep Learning on Molecular Graphs},
  author={Frey, Nathan C and Samsi, Siddharth and McDonald, Joseph and Li, Lin and Coley, Connor W and Gadepally, Vijay},
  booktitle={NeurIPS 2021 AI for Science Workshop},
  year={2021}
}

Please also cite the relevant frameworks: PyG, PyTorch Distributed, PyTorch Lightning,

and any extensions you use: ๐Ÿค— , DeepChem, NFFs, etc.

Extensions

When you're ready to upgrade to fully configurable, reproducible, and scalable workflows, use hydra-zen. hydra-zen integrates seamlessly with LitMatter to self-document ML experiments and orchestrate multiple training runs for extensive hyperparameter sweeps.

Disclaimer

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

ยฉ 2021 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Subject to FAR 52.227-11 โ€“ Patent Rights โ€“ Ownership by the Contractor (May 2014)
SPDX-License-Identifier: MIT

This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

The software/firmware is provided to you on an As-Is basis.

Owner
Nathan Frey
Postdoc at MIT
Nathan Frey
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kรผrzinger 217 Jan 04, 2023
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
[์ œ 13ํšŒ ํˆฌ๋น…์Šค ์ปจํผ๋Ÿฐ์Šค] OK Mugle! - ์žฅ๋ฅด๋ถ€ํ„ฐ ๋ฉœ๋กœ๋””๊นŒ์ง€, Content-based Music Recommendation

Ok Mugle! ๐ŸŽต ์žฅ๋ฅด๋ถ€ํ„ฐ ๋ฉœ๋กœ๋””๊นŒ์ง€, Content-based Music Recommendation 'Ok Mugle!'์€ ์ œ13ํšŒ ํˆฌ๋น…์Šค ์ปจํผ๋Ÿฐ์Šค(2022.01.15)์—์„œ ์ง„ํ–‰ํ•œ ์Œ์•… ์ถ”์ฒœ ํ”„๋กœ์ ํŠธ์ž…๋‹ˆ๋‹ค. Description ๐Ÿ“– ๋ณธ ํ”„๋กœ์ ํŠธ์—์„œ๋Š” Kakao

SeongBeomLEE 5 Oct 09, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
COIN the currently largest dataset for comprehensive instruction video analysis.

COIN Dataset COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e

86 Dec 28, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022