Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

Related tags

Deep LearningRBSRICNN
Overview

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network

An official PyTorch implementation of the RBSRICNN network as described in the paper RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network which is published in the Machine Learning and the Physical Sciences workshop at the 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.

Visual examples:


Abstract

Modern digital cameras and smartphones mostly rely on image signal processing (ISP) pipelines to produce realistic colored RGB images. However, compared to DSLR cameras, low-quality images are usually obtained in many portable mobile devices with compact camera sensors due to their physical limitations. The low-quality images have multiple degradations i.e., sub-pixel shift due to camera motion, mosaick patterns due to camera color filter array, low-resolution due to smaller camera sensors, and the rest information are corrupted by the noise. Such degradations limit the performance of current Single Image Super-resolution (SISR) methods in recovering high-resolution (HR) image details from a single low-resolution (LR) image. In this work, we propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN) that follows the burst photography pipeline as a whole by a forward (physical) model. The proposed Burst SR scheme solves the problem with classical image regularization, convex optimization, and deep learning techniques, compared to existing black-box data-driven methods. The proposed network produces the final output by an iterative refinement of the intermediate SR estimates. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments that generalize robustly to real LR burst inputs with onl synthetic burst data available for training.

BibTeX

@InProceedings{Umer_2021_ML4PS,
               author = {Muhammad Umer, Rao and Micheloni, Christian},
               title = {RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network},
               booktitle = {Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS)},
               month = {December},
               year = {2021}
              }

Quick Test

Dependencies

  • Python 3.7 (version >= 3.0)
  • PyTorch >= 1.0 (CUDA version >= 8.0 if installing with CUDA.)
  • Python packages: pip install numpy opencv-python

Test models

  1. Clone this github repository as the following commands:
git clone https://github.com/RaoUmer/RBSRICNN
cd RBSRICNN
cd test_demo_code
  1. Place the Synthetic Raw LR Burst images in the ./test_demo_code/track1_val_set and ./test_demo_code/track1_test_set folders downloaded from the NTIRE21_BURSTSR.
  2. Place the Real Raw LR Burst images in the ./test_demo_code/track2_val_set and ./test_demo_code/track2_test_set folders downloaded from the NTIRE21_BURSTSR.
  3. Run the tests for the synthetic and real Burst SR by the following provided scripts.
python bsricnn_synsr_val.py
python bsricnn_synsr_test.py
python bsricnn_realsr_val.py
python bsricnn_realsr_test.py
  1. The SR results are into their corresponding ./test_demo_code/sr_results_track{1/2}_{val/test}_set folders.

RBSRICNN Architecture

Overall Representative diagram

Quantitative Results

The quantitative SR results (x4 upscale) are shown over the synthetic and real Burst SR testsets with the common evaluation metrics (PSNR/SSIM/LPIPS). The arrows indicate if high↑ or low↓ values are desired.

Visual Results

Visual comparison of our method with other state-of-the-art methods on the x4 super-resolution over the Raw Burst SR benchmarks. For visual comparison on the benchmarks, you can download our results from the Google Drive: RBSRICNN.

Acknowledgement

The training and testing codes are based on ISRResCNet, burst-photography, and NTIRE21_BURSTSR.

Owner
Rao Muhammad Umer
Computer Vision & Machine Learning Practitioner
Rao Muhammad Umer
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
UT-Sarulab MOS prediction system using SSL models

UTMOS: UTokyo-SaruLab MOS Prediction System Official implementation of "UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022" submitted to INTERSP

sarulab-speech 58 Nov 22, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022