Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Related tags

Deep LearningSPR
Overview

Continual Learning on Noisy Data Streams via Self-Purified Replay

This repository contains the official PyTorch implementation for our ICCV2021 paper.

  • Chris Dongjoo Kim*, Jinseo Jeong*, Sangwoo Moon, Gunhee Kim. Continual Learning on Noisy Data Streams via Self-Purified Replay. In ICCV, 2021 (* equal contribution).

[Paper Link][Slides][Poster]

System Dependencies

  • Python >= 3.6.1
  • CUDA >= 9.0 supported GPU

Installation

Using virtual env is recommended.

$ conda create --name SPR python=3.6

Install pytorch==1.7.0 and torchvision==0.8.1. Then, install the rest of the requirements.

$ pip install -r requirements.txt

Data and Log directory set-up

create checkpoints and data directories. We recommend symbolic links as below.

$ mkdir data
$ ln -s [MNIST Data Path] data/mnist
$ ln -s [CIFAR10 Data Path] data/cifar10
$ ln -s [CIFAR100 Data Path] data/cifar100
$ ln -s [Webvision Data Path] data/webvision

$ ln -s [log directory path] checkpoints

Run

Specify parameters in config yaml, episodes yaml files.

python main.py --log-dir [log directory path] --c [config file path] --e [episode file path] --override "|" --random_seed [seed]

# e.g. to run mnist symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --override "corruption_percent=0.4";

# e.g. to run cifar10 asymmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar10_spr.yaml --e episodes/cifar10-split_epc1_asym_a.yaml --override "asymmetric_nosie=False|corruption_percent=0.4";

# e.g. to run cifar100 superclass symmetric noise 40% experiment,
python main.py --log-dir [log directory path] --c configs/cifar100_spr.yaml --e episodes/cifar100sup-split_epc1_a.yaml --override "superclass_nosie=True|corruption_percent=0.4";

Expert Parallel Training

If you use slurm environment, training expert models in advance is possible.

# e.g. to run mnist symmetric noise 40% experiment,
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --njobs 10 --jobs_per_gpu 3

# also, you can only train experts for later use by adding an --expert_train_only option.
python meta-main.py --log-dir [log directory path] -c configs/mnist_spr.yaml -e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4" --ngpu 10 --jobs_per_gpu 3 --expert_train_only

## to use the trained experts, set the same [log directory path] and [seed].
python main.py --log-dir [log directory path] --c configs/mnist_spr.yaml --e episodes/mnist-split_epc1_a.yaml --random_seed [seed] --override "corruption_percent=0.4";

Citation

The code and dataset are free to use for academic purposes only. If you use any of the material in this repository as part of your work, we ask you to cite:

@inproceedings{kim-ICCV-2021,
    author    = {Chris Dongjoo Kim and Jinseo Jeong and Sangwoo Moon and Gunhee Kim},
    title     = "{Continual Learning on Noisy Data Streams via Self-Purified Replay}"
    booktitle = {ICCV},
    year      = 2021
}

Last edit: Oct 12, 2021

Owner
Jinseo Jeong
graduate student @ vision & learning lab, Seoul National Univ.
Jinseo Jeong
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (中文版) Ongoing 2021.11.13 We are holding a competition —— Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022