Tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos"

Overview

Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos

report PWC

This repository is the official tensorflow python implementation of "Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos" in CVPR 2021 (Oral Presentation) (Best Paper Nominated).

Project Page
TikTok Dataset

Teaser Image

This codebase provides:

  • Inference code
  • Training code
  • Visualization code

Requirements

(This code is tested with tensorflow-gpu 1.14.0, Python 3.7.4, CUDA 10 (version 10.0.130) and cuDNN 7 (version 7.4.2).)

  • numpy
  • imageio
  • matplotlib
  • scikit-image
  • scipy==1.1.0
  • tensorflow-gpu==1.14.0
  • gast==0.2.2
  • Pillow

Installation

Run the following code to install all pip packages:

pip install -r requirements.txt 

In case there is a problem, you can use the following tensorflow docker container "(tensorflow:19.02-py3)":

sudo docker run --gpus all -it --rm -v local_dir:container_dir nvcr.io/nvidia/tensorflow:19.02-py3

Then install the requirements:

pip install -r requirements.txt 

Inference Demo

Input:

The test data dimension should be: 256x256. For any test data you should have 3 .png files: (For an example please take a look at the demo data in "test_data" folder.)

  • name_img.png : The 256x256x3 test image
  • name_mask.png : The 256x256 corresponding mask. You can use any off-the-shelf tools such as removebg to remove the background and get the mask.
  • name_dp.png : The 256x256x3 corresponding DensePose.

Output:

Running the demo generates the following:

  • name.txt : The 256x256 predicted depth
  • name_mesh.obj : The reconstructed mesh. You can use any off-the-shelf tools such as MeshLab to visualize the mesh. Visualization for demo data from different views:

Teaser Image

  • name_normal_1.txt, name_normal_2.txt, name_normal_3.txt : Three 256x256 predicted normal. If you concatenate them in the third axis it will give you the 256x256x3 normal map.
  • name_results.png : visualization of predicted depth heatmap and the predicted normal map. Visualization for demo data:

Teaser Image

Run the demo:

Download the weights from here and extract in the main repository or run this in the main repository:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UOHkmwcWpwt9r11VzOCa_CVamwHVaobV" -O model.zip && rm -rf /tmp/cookies.txt

unzip model.zip

Run the following python code:

python HDNet_Inference.py

From line 26 to 29 under "test path and outpath" you can choose the input directory (default: './test_data'), ouput directory (default: './test_data/infer_out') and if you want to save the visualization (default: True).

More Results

Teaser Image

Training

To train the network, go to training folder and read the README file

MATLAB Visualization

If you want to generate visualizations similar to those on the website, go to MATLAB_Visualization folder and run

make_video.m

From lines 7 to 14, you can choose the test folder (default: test_data) and the image name to process (default: 0043). This will generate a video of the prediction from different views (default: "test_data/infer_out/video/0043/video.avi") This process will take around 2 minutes to generate 164 angles.

Note that this visualization will always generate a 672 × 512 video, You may want to resize your video accordingly for your own tested data.

Citation

If you find the code or our dataset useful in your research, please consider citing the paper.

@InProceedings{Jafarian_2021_CVPR_TikTok,
    author    = {Jafarian, Yasamin and Park, Hyun Soo},
    title     = {Learning High Fidelity Depths of Dressed Humans by Watching Social Media Dance Videos},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {12753-12762}} 
Owner
Yasamin Jafarian
PhD Candidate at the University of Minnesota.
Yasamin Jafarian
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022