An index of recommendation algorithms that are based on Graph Neural Networks.

Overview

GNN based Recommender Systems

An index of recommendation algorithms that are based on Graph Neural Networks.

Our survey Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions is available on arxiv: link

Table of Contents

Recommendation Stages

Matching

Name Paper Venue Year Code
GCMC Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263. arxiv 2017 Python
Pin-Sage Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018, July). Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 974-983). KDD 2018 Python
NGCF Wang, X., He, X., Wang, M., Feng, F., & Chua, T. S. (2019, July). Neural graph collaborative filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 165-174). SIGIR 2019 Python
DGCF Wang, X., Jin, H., Zhang, A., He, X., Xu, T., & Chua, T. S. (2020, July). Disentangled graph collaborative filtering. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1001-1010). SIGIR 2020 Python
LightGCN He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval (pp. 639-648). SIGIR 2020 Python
NIA-GCN Sun, J., Zhang, Y., Guo, W., Guo, H., Tang, R., He, X., ... & Coates, M. (2020, July). Neighbor interaction aware graph convolution networks for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1289-1298). SIGIR 2020 NA
SGL Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., & Xie, X. (2021, July). Self-supervised graph learning for recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 726-735). SIGIR 2021 Python

Ranking

Name Paper Venue Year Code
Fi-GNN Li, Z., Cui, Z., Wu, S., Zhang, X., & Wang, L. (2019, November). Fi-gnn: Modeling feature interactions via graph neural networks for ctr prediction. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 539-548). CIKM 2019 Python
PUP Zheng, Y., Gao, C., He, X., Li, Y., & Jin, D. (2020, April). Price-aware recommendation with graph convolutional networks. In 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 133-144). IEEE. ICDE 2020 Python
L0-SIGN Su, Y., Zhang, R., Erfani, S., & Xu, Z. (2021, May). Detecting Beneficial Feature Interactions for Recommender Systems. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI). AAAI 2021 Python
DG-ENN Guo, W., Su, R., Tan, R., Guo, H., Zhang, Y., Liu, Z., ... & He, X. (2021). Dual Graph enhanced Embedding Neural Network for CTRPrediction. arXiv preprint arXiv:2106.00314. KDD 2021 NA
SHCF Li, C., Hu, L., Shi, C., Song, G., & Lu, Y. (2021). Sequence-aware Heterogeneous Graph Neural Collaborative Filtering. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 64-72). Society for Industrial and Applied Mathematics. SDM 2021 Python
GCM Wu, J., He, X., Wang, X., Wang, Q., Chen, W., Lian, J., & Xie, X. (2020). Graph Convolution Machine for Context-aware Recommender System. arXiv preprint arXiv:2001.11402. Frontiers of Computer Science 2021 Python

Re-ranking

Name Paper Venue Year Code
IRGPR Liu, W., Liu, Q., Tang, R., Chen, J., He, X., & Heng, P. A. (2020, October). Personalized Re-ranking with Item Relationships for E-commerce. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 925-934). CIKM 2020 NA

Recommendation Scenarios

Social Recommendation

Name Paper Venue Year Code
DGRec Song, W., Xiao, Z., Wang, Y., Charlin, L., Zhang, M., & Tang, J. (2019, January). Session-based social recommendation via dynamic graph attention networks. In Proceedings of the Twelfth ACM international conference on web search and data mining (pp. 555-563). WSDM 2019 Python
GraphRec Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019, May). Graph neural networks for social recommendation. In The World Wide Web Conference (pp. 417-426). WWW 2019 Python
DANSER Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., & Chen, G. (2019, May). Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems. In The World Wide Web Conference (pp. 2091-2102). WWW 2019 Python
DiffNet Wu, L., Sun, P., Fu, Y., Hong, R., Wang, X., & Wang, M. (2019, July). A neural influence diffusion model for social recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 235-244). SIGIR 2019 Python
RecoGCN Xu, F., Lian, J., Han, Z., Li, Y., Xu, Y., & Xie, X. (2019, November). Relation-aware graph convolutional networks for agent-initiated social e-commerce recommendation. In Proceedings of the 28th ACM international conference on information and knowledge management (pp. 529-538). CIKM 2019 Python
HGP Kim, K. M., Kwak, D., Kwak, H., Park, Y. J., Sim, S., Cho, J. H., ... & Ha, J. W. (2019). Tripartite heterogeneous graph propagation for large-scale social recommendation. arXiv preprint arXiv:1908.02569. RecSys 2019 NA
GAT-NSR Mu, N., Zha, D., He, Y., & Tang, Z. (2019, November). Graph attention networks for neural social recommendation. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 1320-1327). IEEE. ICTAI 2019 NA
SR-HGNN Xu, H., Huang, C., Xu, Y., Xia, L., Xing, H., & Yin, D. (2020, November). Global context enhanced social recommendation with hierarchical graph neural networks. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 701-710). IEEE. ICDM 2020 Python
TGRec Bai, T., Zhang, Y., Wu, B., & Nie, J. Y. (2020, December). Temporal Graph Neural Networks for Social Recommendation. In 2020 IEEE International Conference on Big Data (Big Data) (pp. 898-903). IEEE. ICBD 2020 NA
DiffNet++ Wu, L., Li, J., Sun, P., Hong, R., Ge, Y., & Wang, M. (2020). Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
ESRF Yu, J., Yin, H., Li, J., Gao, M., Huang, Z., & Cui, L. (2020). Enhance social recommendation with adversarial graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
HOSR Liu, Y., Liang, C., He, X., Peng, J., Zheng, Z., & Tang, J. (2020). Modelling high-order social relations for item recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 NA
GNN-SoR Guo, Z., & Wang, H. (2020). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776-2783. TII 2020 NA
ASR Luo, D., Bian, Y., Zhang, X., & Huan, J. (2020). Attentive Social Recommendation: Towards User And Item Diversities. arXiv preprint arXiv:2011.04797. arxiv 2020 Python
KCGN Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., ... & Ye, Y. (2021, January). Knowledge-aware coupled graph neural network for social recommendation. In AAAI Conference on Artificial Intelligence (AAAI). AAAI 2021 Python
MHCN Yu, J., Yin, H., Li, J., Wang, Q., Hung, N. Q. V., & Zhang, X. (2021, April). Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation. In Proceedings of the Web Conference 2021 (pp. 413-424). WWW 2021 Python
GBGCN Zhang, J., Gao, C., Jin, D., & Li, Y. (2021, April). Group-Buying Recommendation for Social E-Commerce. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1536-1547). IEEE. ICDE 2021 Python
SEPT Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., & Hung, N. Q. V. (2021). Socially-Aware Self-Supervised Tri-Training for Recommendation. arXiv preprint arXiv:2106.03569. KDD 2021 Python
DiffNetLG Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., & Hou, Y. (2021, July). Social Recommendation with Implicit Social Influence. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1788-1792). SIGIR 2021 NA

Sequential Recommendation

Name Paper Venue Year Code
GME Xie, M., Yin, H., Xu, F., Wang, H., & Zhou, X. (2016, November). Graph-based metric embedding for next poi recommendation. In International Conference on Web Information Systems Engineering (pp. 207-222). Springer, Cham. WISE 2016 NA
MA-GNN Ma, C., Ma, L., Zhang, Y., Sun, J., Liu, X., & Coates, M. (2020, April). Memory augmented graph neural networks for sequential recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5045-5052). AAAI 2020 NA
ISSR Liu, F., Liu, W., Li, X., & Ye, Y. (2020). Inter-sequence Enhanced Framework for Personalized Sequential Recommendation. arXiv preprint arXiv:2004.12118. AAAI 2020 NA
STP-UDGAT Lim, N., Hooi, B., Ng, S. K., Wang, X., Goh, Y. L., Weng, R., & Varadarajan, J. (2020, October). STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 845-854). CIKM 2020 NA
GPR Chang, B., Jang, G., Kim, S., & Kang, J. (2020, October). Learning graph-based geographical latent representation for point-of-interest recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 135-144). CIKM 2020 NA
Wang et al. Wang, B., & Cai, W. (2020). Knowledge-enhanced graph neural networks for sequential recommendation. Information, 11(8), 388. Information 2020 NA
SGRec Li, Y., Chen, T., Yin, H., & Huang, Z. (2021). Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation. arXiv preprint arXiv:2106.15814. IJCAI 2021 NA
RetaGNN Hsu, C., & Li, C. T. (2021, April). RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation. In Proceedings of the Web Conference 2021 (pp. 2968-2979). WWW 2021 Python
SURGE Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., ... & Li, Y. (2021, July). Sequential Recommendation with Graph Neural Networks. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 378-387). SIGIR 2021 NA
TGSRec Fan, Z., Liu, Z., Zhang, J., Xiong, Y., Zheng, L., & Yu, P. S. (2021). Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer. arXiv preprint arXiv:2108.06625. CIKM 2021 Python
GES-SASRec Zhu, T., Sun, L., & Chen, G. (2021). Graph-based Embedding Smoothing for Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2021 Python
DGSR Zhang, M., Wu, S., Yu, X., & Wang, L. (2021). Dynamic Graph Neural Networks for Sequential Recommendation. arXiv preprint arXiv:2104.07368. arxiv 2021 NA

Session Recommendation

Name Paper Venue Year Code
SR-GNN Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019, July). Session-based recommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 346-353). AAAI 2019 Python
GC-SAN Xu, C., Zhao, P., Liu, Y., Sheng, V. S., Xu, J., Zhuang, F., ... & Zhou, X. (2019, August). Graph Contextualized Self-Attention Network for Session-based Recommendation. In IJCAI (Vol. 19, pp. 3940-3946). IJCAI 2019 Python
FGNN Qiu, R., Li, J., Huang, Z., & Yin, H. (2019, November). Rethinking the item order in session-based recommendation with graph neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 579-588). CIKM 2019 Python
MGNN-SPred Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). WWW 2020 Python
LESSR Chen, T., & Wong, R. C. W. (2020, August). Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1172-1180). KDD 2020 Python
TA-GNN Yu, F., Zhu, Y., Liu, Q., Wu, S., Wang, L., & Tan, T. (2020, July). TAGNN: Target attentive graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1921-1924). SIGIR 2020 Python
GCE-GNN Wang, Z., Wei, W., Cong, G., Li, X. L., Mao, X. L., & Qiu, M. (2020, July). Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 169-178). SIGIR 2020 Python
MKM-SR Meng, W., Yang, D., & Xiao, Y. (2020, July). Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1091-1100). SIGIR 2020 Python
GAG Qiu, R., Yin, H., Huang, Z., & Chen, T. (2020, July). Gag: Global attributed graph neural network for streaming session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 669-678). SIGIR 2020 Python
SGNN-HN Pan, Z., Cai, F., Chen, W., Chen, H., & de Rijke, M. (2020, October). Star graph neural networks for session-based recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 1195-1204). CIKM 2020 NA
CAGE Sheu, H. S., & Li, S. (2020, September). Context-aware graph embedding for session-based news recommendation. In Fourteenth ACM conference on recommender systems (pp. 657-662). RecSys 2020 NA
A-PGNN Zhang, M., Wu, S., Gao, M., Jiang, X., Xu, K., & Wang, L. (2020). Personalized graph neural networks with attention mechanism for session-aware recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2020 Python
DGTN Zheng, Y., Liu, S., Li, Z., & Wu, S. (2020, November). DGTN: Dual-channel Graph Transition Network for Session-based Recommendation. In 2020 International Conference on Data Mining Workshops (ICDMW) (pp. 236-242). IEEE. ICDMW 2020 Python
DHCN Xia, X., Yin, H., Yu, J., Wang, Q., Cui, L., & Zhang, X. (2020). Self-supervised hypergraph convolutional networks for session-based recommendation. arXiv preprint arXiv:2012.06852. AAAI 2021 Python
SERec Chen, T., & Wong, R. C. W. (2021, March). An Efficient and Effective Framework for Session-based Social Recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 400-408). WSDM 2021 Python
TASRec Zhou, H., Tan, Q., Huang, X., Zhou, K., & Wang, X. (2021). Temporal Augmented Graph Neural Networks for Session-Based Recommendations. SIGIR 2021 NA
DAT-MDI Chen, C., Guo, J., & Song, B. (2021, July). Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 869-878). SIGIR 2021 NA
COTREC Xia, X., Yin, H., Yu, J., Shao, Y., & Cui, L. (2021). Self-Supervised Graph Co-Training for Session-based Recommendation. arXiv preprint arXiv:2108.10560. CIKM 2021 Python
SHARE Wang, J., Ding, K., Zhu, Z., & Caverlee, J. (2021). Session-based Recommendation with Hypergraph Attention Networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 82-90). Society for Industrial and Applied Mathematics. SDM 2021 NA

Bundle Recommendation

Name Paper Venue Year Code
BGCN Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Bundle recommendation with graph convolutional networks. In Proceedings of the 43rd international ACM SIGIR conference on Research and development in Information Retrieval (pp. 1673-1676). SIGIR 2020 Python
HFGN Li, X., Wang, X., He, X., Chen, L., Xiao, J., & Chua, T. S. (2020, July). Hierarchical fashion graph network for personalized outfit recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 159-168). SIGIR 2020 Python
BundleNet Deng, Q., Wang, K., Zhao, M., Zou, Z., Wu, R., Tao, J., ... & Chen, L. (2020, October). Personalized Bundle Recommendation in Online Games. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2381-2388). CIKM 2020 NA
DPR Zheng, Z., Wang, C., Xu, T., Shen, D., Qin, P., Huai, B., ... & Chen, E. (2021, April). Drug Package Recommendation via Interaction-aware Graph Induction. In Proceedings of the Web Conference 2021 (pp. 1284-1295). WWW 2021 NA

Cross Domain Recommendation

Name Paper Venue Year Code
PPGN Zhao, C., Li, C., & Fu, C. (2019, November). Cross-domain recommendation via preference propagation graphnet. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 2165-2168). CIKM 2019 Python
BiTGCF Liu, M., Li, J., Li, G., & Pan, P. (2020, October). Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 885-894). CIKM 2020 Python
DAN Wang, B., Zhang, C., Zhang, H., Lyu, X., & Tang, Z. (2020, October). Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2249-2252). CIKM 2020 NA
HeroGRAPH Cui, Q., Wei, T., Zhang, Y., & Zhang, Q. (2020). HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation. In ORSUM@ RecSys. RecSys 2020 Python
DAGCN Guo, L., Tang, L., Chen, T., Zhu, L., Nguyen, Q. V. H., & Yin, H. (2021). DA-GCN: A Domain-aware Attentive Graph Convolution Network for Shared-account Cross-domain Sequential Recommendation. arXiv preprint arXiv:2105.03300. IJCAI 2021 NA

Multi-behavior Recommendation

Name Paper Venue Year Code
MGNN-SPred Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2020, April). Beyond clicks: Modeling multi-relational item graph for session-based target behavior prediction. In Proceedings of The Web Conference 2020 (pp. 3056-3062). WWW 2020 Python
MBGCN Jin, B., Gao, C., He, X., Jin, D., & Li, Y. (2020, July). Multi-behavior recommendation with graph convolutional networks. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 659-668). SIGIR 2020 NA
MGNN Zhang, W., Mao, J., Cao, Y., & Xu, C. (2020, October). Multiplex Graph Neural Networks for Multi-behavior Recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (pp. 2313-2316). CIKM 2020 NA
KHGT Xia, L., Huang, C., Xu, Y., Dai, P., Zhang, X., Yang, H., ... & Bo, L. (2021, May). Knowledge-Enhanced Hierarchical Graph Transformer Network for Multi-Behavior Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 4486-4493). AAAI 2021 Python
GHCF Chen, C., Ma, W., Zhang, M., Wang, Z., He, X., Wang, C., ... & Ma, S. (2021, May). Graph Heterogeneous Multi-Relational Recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 5, pp. 3958-3966). AAAI 2021 Python
GNMR Xia, L., Huang, C., Xu, Y., Dai, P., Lu, M., & Bo, L. (2021, April). Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE) (pp. 1931-1936). IEEE. ICDE 2021 Python
DMBGN Xiao, F., Li, L., Xu, W., Zhao, J., Yang, X., Lang, J., & Wang, H. (2021). DMBGN: Deep Multi-Behavior Graph Networks for Voucher Redemption Rate Prediction. arXiv preprint arXiv:2106.03356. KDD 2021 Python
MB-GMN Xia, L., Xu, Y., Huang, C., Dai, P., & Bo, L. (2021, July). Graph meta network for multi-behavior recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 757-766). SIGIR 2021 Python
HMG-CR Yang, H., Chen, H., Li, L., Yu, P. S., & Xu, G. (2021). Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation. arXiv preprint arXiv:2109.02859. ICDM 2021 Python
LP-MRGNN Wang, W., Zhang, W., Liu, S., Liu, Q., Zhang, B., Lin, L., & Zha, H. (2021). Incorporating Link Prediction into Multi-Relational Item Graph Modeling for Session-based Recommendation. IEEE Transactions on Knowledge and Data Engineering. TKDE 2021 NA
GNNH Yu, B., Zhang, R., Chen, W., & Fang, J. (2021). Graph neural network based model for multi-behavior session-based recommendation. GeoInformatica, 1-19. GeoInformatica 2021 NA

Recommendation Objectives

Diversity

Name Paper Venue Year Code
V2HT Li, M., Gan, T., Liu, M., Cheng, Z., Yin, J., & Nie, L. (2019, November). Long-tail hashtag recommendation for micro-videos with graph convolutional network. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 509-518). CIKM 2019 NA
BGCF Sun, J., Guo, W., Zhang, D., Zhang, Y., Regol, F., Hu, Y., ... & Coates, M. (2020, August). A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2030-2039). KDD 2020 Python
DGCN Zheng, Y., Gao, C., Chen, L., Jin, D., & Li, Y. (2021, April). DGCN: Diversified Recommendation with Graph Convolutional Networks. In Proceedings of the Web Conference 2021 (pp. 401-412). WWW 2021 Python
FH-HAT Xie, R., Liu, Q., Liu, S., Zhang, Z., Cui, P., Zhang, B., & Lin, L. (2021). Improving Accuracy and Diversity in Matching of Recommendation with Diversified Preference Network. arXiv preprint arXiv:2102.03787. TBD 2021 NA
Isufi et al. Isufi, E., Pocchiari, M., & Hanjalic, A. (2021). Accuracy-diversity trade-off in recommender systems via graph convolutions. Information Processing & Management, 58(2), 102459. IPM 2021 Python

Explainability

Name Paper Venue Year Code
RippleNet Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., & Guo, M. (2018, October). Ripplenet: Propagating user preferences on the knowledge graph for recommender systems. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 417-426). CIKM 2018 Python
KPRN Wang, X., Wang, D., Xu, C., He, X., Cao, Y., & Chua, T. S. (2019, July). Explainable reasoning over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 5329-5336). AAAI 2019 Python
RuleRec Ma, W., Zhang, M., Cao, Y., Jin, W., Wang, C., Liu, Y., ... & Ren, X. (2019, May). Jointly learning explainable rules for recommendation with knowledge graph. In The World Wide Web Conference (pp. 1210-1221). WWW 2019 Python
KGAT Wang, X., He, X., Cao, Y., Liu, M., & Chua, T. S. (2019, July). Kgat: Knowledge graph attention network for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 950-958). KDD 2019 Python
PGPR Xian, Y., Fu, Z., Muthukrishnan, S., De Melo, G., & Zhang, Y. (2019, July). Reinforcement knowledge graph reasoning for explainable recommendation. In Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval (pp. 285-294). SIGIR 2019 Python
ECFKG Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. ICML 2019 Python
EIUM Huang, X., Fang, Q., Qian, S., Sang, J., Li, Y., & Xu, C. (2019, October). Explainable interaction-driven user modeling over knowledge graph for sequential recommendation. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 548-556). MM 2019 NA
HAGERec Yang, Z., & Dong, S. (2020). HAGERec: hierarchical attention graph convolutional network incorporating knowledge graph for explainable recommendation. Knowledge-Based Systems, 204, 106194. KBS 2020 NA
TMER Chen, H., Li, Y., Sun, X., Xu, G., & Yin, H. (2021, March). Temporal meta-path guided explainable recommendation. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 1056-1064). WSDM 2021 Python

Fairness

Name Paper Venue Year Code
Fairwalk Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards fair graph embedding. IJCAI 2019 Python
CFCGE Bose, A., & Hamilton, W. (2019, May). Compositional fairness constraints for graph embeddings. In International Conference on Machine Learning (pp. 715-724). PMLR. ICML 2019 Python
FairGNN Dai, E., & Wang, S. (2021, March). Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining (pp. 680-688). WSDM 2021 Python
FairGo Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., & Wang, M. (2021, April). Learning Fair Representations for Recommendation: A Graph-based Perspective. In Proceedings of the Web Conference 2021 (pp. 2198-2208). WWW 2021 Python
Owner
FIB LAB, Tsinghua University
FIB LAB, Tsinghua University
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
Clinica is a software platform for clinical research studies involving patients with neurological and psychiatric diseases and the acquisition of multimodal data

Clinica Software platform for clinical neuroimaging studies Homepage | Documentation | Paper | Forum | See also: AD-ML, AD-DL ClinicaDL About The Proj

ARAMIS Lab 165 Dec 29, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022