Retinal vessel segmentation based on GT-UNet

Related tags

Deep LearningGT-U-Net
Overview

Retinal vessel segmentation based on GT-UNet

Introduction

This project is a retinal blood vessel segmentation code based on UNet-like Group Transformer Network (GT-UNet), including data preprocessing, model training and testing, visualization, etc.

Requirements

The main package and version of the python environment are as follows

# Name                    Version         
python                    3.7.9                    
pytorch                   1.7.0         
torchvision               0.8.0         
cudatoolkit               10.2.89       
cudnn                     7.6.5           
matplotlib                3.3.2              
numpy                     1.19.2        
opencv                    3.4.2         
pandas                    1.1.3        
pillow                    8.0.1         
scikit-learn              0.23.2          
scipy                     1.5.2           
tensorboardX              2.1        
tqdm                      4.54.1             

Usage

The project structure and intention are as follows :

VesselSeg-Pytorch			# Source code		
    ├── config.py		 	# Configuration information
    ├── lib			            # Function library
    │   ├── common.py
    │   ├── dataset.py		        # Dataset class to load training data
    │   ├── datasetV2.py		        # Dataset class to load training data with lower memory
    │   ├── extract_patches.py		# Extract training and test samples
    │   ├── help_functions.py		# 
    │   ├── __init__.py
    │   ├── logger.py 		        # To create log
    │   ├── losses
    │   ├── metrics.py		        # Evaluation metrics
    │   └── pre_processing.py		# Data preprocessing
    ├── models		        # All models are created in this folder
    │   ├── __init__.py
    │   ├── nn
    │   └── GT-UNet.py
    ├── prepare_dataset	        # Prepare the dataset (organize the image path of the dataset)
    │   ├── chasedb1.py
    │   ├── data_path_list		  # image path of dataset
    │   ├── drive.py
    │   └── stare.py
    ├── tools			     # some tools
    │   ├── ablation_plot.py
    │   ├── ablation_plot_with_detail.py
    │   ├── merge_k-flod_plot.py
    │   └── visualization
    ├── function.py			        # Creating dataloader, training and validation functions 
    ├── test.py			            # Test file
    └── train.py			          # Train file

Training model

Please confirm the configuration information in the config.py. Pay special attention to the train_data_path_list and test_data_path_list. Then, running:

python train.py

You can configure the training information in config, or modify the configuration parameters using the command line. The training results will be saved to the corresponding directory(save name) in the experiments folder.

3) Testing model

The test process also needs to specify parameters in config.py. You can also modify the parameters through the command line, running:

python test.py  

The above command loads the best_model.pth in ./experiments/GT-UNet_vessel_seg and performs a performance test on the testset, and its test results are saved in the same folder.

Owner
Kent0n
Kent0n
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
LBK 20 Dec 02, 2022