Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Overview

Demystifying How Self-Supervised Features Improve Training from Noisy Labels

This code is a PyTorch implementation of the paper "[Demystifying How Self-Supervised Features Improve Training from Noisy Labels]". The code is run on the Tesla V-100.

Prerequisites

Python 3.8.5

PyTorch 1.7.1

Torchvision 0.9.0

Guideline

Downloading dataset:

Download the dataset from http://www.cs.toronto.edu/~kriz/cifar.html Put the dataset on data/

Get a SSL pre-trained model:

Run command below:

python main.py --batch_size 512 --epochs 1000 

Or download the pre-trained model from "this url" and put the pre-trained model in results/

CE with fixed encoder on symm. label noise:

Run command below:

python CE.py --simclr_pretrain --finetune_fc_only --noise_type symmetric --noise_rate 0.6 --epochs 150 

CE with fixed encoder on instance label noise (with down-sampling):

Run command below:

python CE.py --simclr_pretrain --down_sample --finetune_fc_only --noise_type instance --noise_rate 0.6 --epochs 150 

CE with regularizer on symm. label noise (random initialization):

Run command below:

python CE_Reg.py --reg rkd_dis --noise_type symmetric --noise_rate 0.6 --epochs 150 

References

The code of SSL pre-training is based on https://github.com/leftthomas/SimCLR

Owner
[email protected]
REsponsible & Accountable Learning (REAL) @ University of California, Santa Cruz
<a href=[email protected]">
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 โ€” Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
๐Ÿ“š A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

๐Ÿ“š A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution ๐Ÿ“œ Technical report ๐Ÿ—จ๏ธ Presentation ๐ŸŽ‰ Announcement ๐Ÿ›†Motion Prediction Channel Website ๐Ÿ›†

158 Jan 08, 2023
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Cours d'Algorithmique Appliquรฉe avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022