Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Overview

Understanding the Generalization Benefit of Model Invariance from a Data Perspective

This is the code for our NeurIPS2021 paper "Understanding the Generalization Benefit of Model Invariance from a Data Perspective". There are two major parts in our code: sample covering number estimation and generalization benefit evaluation.

Requirments

  • Python 3.8
  • PyTorch
  • torchvision
  • scikit-learn-extra
  • scipy
  • robustness package (already included in our code)

Our code is based on robustness package.

Dataset

  • CIFAR-10 Download and extract the data into /data/cifar10
  • R2N2 Download the ShapeNet rendered images and put the data into /data/r2n2

The randomly sampled R2N2 images used for computing sample covering numbers and indices of examples for different sample sizes could be found here.

Estimation of sample covering numbers

To estimate the sample covering numbers of different data transformations, run the following script in /scn.

CUDA_VISIBLE_DEVICES=0 python run_scn.py  --epsilon 3 --transformation crop --cover_number_method fast --data-path /path/to/dataset 

Note that the input is a N x C x H x W tensor where N is sample size.

Evaluation of generalization benefit

To train the model with data augmentation method, run the following script in /learn_invariance for R2N2 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name view

or the following script for CIFAR-10 dataset

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset cifar \
    --data ../data/cifar10 \
    --n-per-class all \
    --transforms crop  \
    --inv-method aug \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name crop 

By setting --transforms to be one of {none, flip, crop, rotate, view}, the specific transformation will be considered.

To train the model with regularization method, run the following script. Currently, the code only support 3d-view transformation on R2N2 dataset.

CUDA_VISIBLE_DEVICES=0 python main.py \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --transforms view  \
    --inv-method reg \
    --inv-method-beta 1 \
    --out-dir /path/to/out_dir \
    --arch resnet18 --epoch 110 --lr 1e-2 --step-lr 50 \
    --workers 30 --batch-size 128 --exp-name reg_view 

To evaluate the model with invariance loss and worst-case consistency accuracy, run the following script.

CUDA_VISIBLE_DEVICES=0 python main.py  \
    --dataset r2n2 \
    --data ../data/r2n2/ShapeNetRendering \
    --metainfo-path ../data/r2n2/metainfo_all.json \
    --inv-method reg \
    --arch resnet18 \
    --resume /path/to/checkpoint.pt.best \
    --eval-only 1 \
    --transforms view  \
    --adv-eval 0 \
    --batch-size 2  \
    --no-store 

Note that to have the worst-case consistency accuracy we need to load 24 view images in R2N2RenderingsTorch class in dataset_3d.py.

Owner
PhD student at University of Maryland
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
571 Dec 25, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
A collection of models for image<->text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection?

PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Toyota Research Institute - Machine Learning 364 Dec 27, 2022