[AI6122] Text Data Management & Processing

Overview

[AI6122] Text Data Management & Processing

====== I M P O R T A N T ======

The content in this repository should exclusively be utilized in sharing solutions for projects, communicating ideas for related problems, and references to similar assignments. If you are a student facing an assignment with the same or similar topics, you can use this repository as a reference, while the final report should include the citations of the repository. If you submit an assignment without proper acknowledgment after referring to this repository, you may be considered PLAGIARISM by your instructor, and the author will not pay ANY responsibility for this. Please refer to your teacher's and your school's instructions for the determination of academic integrity.

Moreover, if you are taking the AI6122 course, do not be stupid. You can utilize the materials here as a reference to construct your own assignment and reflect the citation to this repository in the final report. If you copy the code without citing it, you have violated NTU's academic integrity and are involved in plagiarism.

Please refer to the following links for NTU's determination of academic integrity and plagiarism:

https://ts.ntu.edu.sg/sites/intranet/dept/tlpd/ai/Pages/NTU-Academic-Integrity-Policy.aspx

https://ts.ntu.edu.sg/sites/intranet/dept/tlpd/ai/Pages/default.aspx

https://ts.ntu.edu.sg/sites/policyportal/new/Documents/All%20including%20NIE%20staff%20and%20students/Student%20Academic%20Integrity%20Policy.pdf

If you think the professor is easy to fool, think again.
You know who you are.

====== D I S C L A I M E R ======

This repository should only be used for reasonable academic discussions. I, the owner of this repository, never and will never ALLOWING another student to copy this assignment as their own. In such circumstances, I do not violate NTU's statement on academic integrity as of the time this repository is open (18/01/2022). I am not responsible for any future plagiarism using the content of this repository.



====== I N T R O D U C T I O N ======

[AI6122] Text Data Management & Processing is an elective course of Master of Science in Artificial Intelligence Graduate Programme (MSAI), School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course is Prof. Sun Aixin.

The projects of this course consist of one individual Literature Review, and one group Project. The topic of them are shown below, and we do not have the specific grade of them given by the prof. Since multiple people complete the group work, I do not have the right to disclose the report and others' codes individually so that the relevant parts will be hidden, and the group project only presents part of the code and report finished by myself.

Type Topic Grade
Literature Review Chinese Spelling Check N.A. / 30.0
Group Project Data Analysis and Processing N.A. / 40.0
Quiz N.A. N.A. / 30.0

====== A C K N O W L E D G E M E N T ======

All of above projects are designed by Prof. Sun Aixin.

Owner
HT. Li
HT. Li
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023