Learning Continuous Image Representation with Local Implicit Image Function

Overview

LIIF

This repository contains the official implementation for LIIF introduced in the following paper:

Learning Continuous Image Representation with Local Implicit Image Function

Yinbo Chen, Sifei Liu, Xiaolong Wang

The project page with video is at https://yinboc.github.io/liif/.

Citation

If you find our work useful in your research, please cite:

@article{chen2020learning,
  title={Learning Continuous Image Representation with Local Implicit Image Function},
  author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2012.09161},
  year={2020}
}

Environment

  • Python 3
  • Pytorch 1.6.0
  • TensorboardX
  • yaml, numpy, tqdm, imageio

Quick Start

  1. Download a DIV2K pre-trained model.
Model File size Download
EDSR-baseline-LIIF 18M Dropbox | Google Drive
RDN-LIIF 256M Dropbox | Google Drive
  1. Convert your image to LIIF and present it in a given resolution (with GPU 0, [MODEL_PATH] denotes the .pth file)
python demo.py --input xxx.png --model [MODEL_PATH] --resolution [HEIGHT],[WIDTH] --output output.png --gpu 0

Reproducing Experiments

Data

mkdir load for putting the dataset folders.

  • DIV2K: mkdir and cd into load/div2k. Download HR images and bicubic validation LR images from DIV2K website (i.e. Train_HR, Valid_HR, Valid_LR_X2, Valid_LR_X3, Valid_LR_X4). unzip these files to get the image folders.

  • benchmark datasets: cd into load/. Download and tar -xf the benchmark datasets (provided by this repo), get a load/benchmark folder with sub-folders Set5/, Set14/, B100/, Urban100/.

  • celebAHQ: mkdir load/celebAHQ and cp scripts/resize.py load/celebAHQ/, then cd load/celebAHQ/. Download and unzip data1024x1024.zip from the Google Drive link (provided by this repo). Run python resize.py and get image folders 256/, 128/, 64/, 32/. Download the split.json.

Running the code

0. Preliminaries

  • For train_liif.py or test.py, use --gpu [GPU] to specify the GPUs (e.g. --gpu 0 or --gpu 0,1).

  • For train_liif.py, by default, the save folder is at save/_[CONFIG_NAME]. We can use --name to specify a name if needed.

  • For dataset args in configs, cache: in_memory denotes pre-loading into memory (may require large memory, e.g. ~40GB for DIV2K), cache: bin denotes creating binary files (in a sibling folder) for the first time, cache: none denotes direct loading. We can modify it according to the hardware resources before running the training scripts.

1. DIV2K experiments

Train: python train_liif.py --config configs/train-div2k/train_edsr-baseline-liif.yaml (with EDSR-baseline backbone, for RDN replace edsr-baseline with rdn). We use 1 GPU for training EDSR-baseline-LIIF and 4 GPUs for RDN-LIIF.

Test: bash scripts/test-div2k.sh [MODEL_PATH] [GPU] for div2k validation set, bash scripts/test-benchmark.sh [MODEL_PATH] [GPU] for benchmark datasets. [MODEL_PATH] is the path to a .pth file, we use epoch-last.pth in corresponding save folder.

2. celebAHQ experiments

Train: python train_liif.py --config configs/train-celebAHQ/[CONFIG_NAME].yaml.

Test: python test.py --config configs/test/test-celebAHQ-32-256.yaml --model [MODEL_PATH] (or test-celebAHQ-64-128.yaml for another task). We use epoch-best.pth in corresponding save folder.

Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
LibMTL: A PyTorch Library for Multi-Task Learning

LibMTL LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and AP

765 Jan 06, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023