A framework that allows people to write their own Rocket League bots.

Overview

YOU PROBABLY SHOULDN'T PULL THIS REPO

Bot Makers Read This!

If you just want to make a bot, you don't need to be here. Instead, start with one of these:

If you just want to play with some bots, you can go to RLBotGUI to easily start matches with bots

Framework Contributors

This repository is currently incomplete to meet the legal needs of the Psyonix API. It is missing the source code behind RLBot.exe, and a few other files. If you want to make a code change that involves RLBot.exe (or the interface dll since it's closely related), you'll need some help from someone with access to the closed repo.

We expect we'll be able to open-source everything eventually, and then this repo will be back in business.

NOTICE: We intend to cherry-pick any commits you make here into the closed repo. At a later date, when we have permission to open-source everything, we will force push the closed repo to this master branch. Your commits will still be there with proper attribution, but if you have any work in progress, it will need to be rebased at that time.

RLBot

Framework Info

The RLBot framework helps people create bots for use in Rocket League's offline modes, just for fun. It provides values from the game like car and ball position, and carries back button presses. RLBot works for up to 10 bots reliably; it can be used up to 64, but can result in issues (bots disappearing after goals, spawning inside one another, etc).

Requirements

Rocket League, Python 3.6+

Quick Start

  1. Run setup.bat (or equivalent if you're on Linux or Mac)
  2. Open a terminal and execute python runner.py

Development Workflow

The first thing you'll want to do is run setup.bat. This does a lot of important things:

  • Sets up your rlbot installation in pip to link to your local files in this folder. Once you've done this, running rlbot from anywhere on your computer will reference these local files, including the dlls, etc.
  • Generates important code based on the .fbs message spec. Therefore it's a prerequisite for running anything.
  • Installs python package dependencies.

If you're doing work that affects our .dll or .exe files, you should also be aware of:

  • copy-dlls.bat - This copies the debug versions any built dlls from visual studio into the correct subdirectory in the python source folder.
  • copy-dlls-release.bat - This copies the release versions any built dlls from visual studio into the correct subdirectory in the python source folder.

For deploying changes, please see https://github.com/RLBot/RLBot/wiki/Deploying-Changes

When you're done with development and want to get back to the official rlbot version vended from https://pypi.org/project/rlbot/, the easiest way to do that is simply pip uninstall rlbot. Then the next time you execute a bat file from one of the RLBot*Example repos, a fresh copy will be installed from pip.

Wikis

There's tons of good information at https://github.com/RLBot/RLBot/wiki

Extras

Community Info

Video Example

Video

Tournament History

Tournament results are recorded in our braacket league.

Videos:

The best part

Psyonix Cone gave us a thumbs up! Thumbs up

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
SuMa++: Efficient LiDAR-based Semantic SLAM (Chen et al IROS 2019)

SuMa++: Efficient LiDAR-based Semantic SLAM This repository contains the implementation of SuMa++, which generates semantic maps only using three-dime

Photogrammetry & Robotics Bonn 701 Dec 30, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022