Training BERT with Compute/Time (Academic) Budget

Overview

Training BERT with Compute/Time (Academic) Budget

This repository contains scripts for pre-training and finetuning BERT-like models with limited time and compute budget. The code is based on the work presented in the following paper:

Peter Izsak, Moshe Berchansky, Omer Levy, How to Train BERT with an Academic Budget - (to appear at EMNLP 2021).

Installation

The pre-training and finetuning scripts are based on Deepspeed and HuggingFace Transformers libraries.

Preliminary Installation

We recommend creating a virtual environment with python 3.6+, PyTorch and apex.

Installation Requirements

pip install -r requirements.txt

We suggest running Deepspeed's utility ds_report and verify Deepspeed components can be compiled (JIT).

Dataset

The dataset directory includes scripts to pre-process the datasets we used in our experiments (Wikipedia, Bookcorpus). See dedicated README for full details.

Pretraining

Pretraining script: run_pretraining.py

For all possible pretraining arguments see: python run_pretraining.py -h

We highly suggest reviewing the various training features we provide within the library.

Example for training with the best configuration presented in our paper (24-layers/1024H/time-based learning rate schedule/fp16):
deepspeed run_pretraining.py \
  --model_type bert-mlm --tokenizer_name bert-large-uncased \
  --hidden_act gelu \
  --hidden_size 1024 \
  --num_hidden_layers 24 \
  --num_attention_heads 16 \
  --intermediate_size 4096 \
  --hidden_dropout_prob 0.1 \
  --attention_probs_dropout_prob 0.1 \
  --encoder_ln_mode pre-ln \
  --lr 1e-3 \
  --train_batch_size 4096 \
  --train_micro_batch_size_per_gpu 32 \
  --lr_schedule time \
  --curve linear \
  --warmup_proportion 0.06 \
  --gradient_clipping 0.0 \
  --optimizer_type adamw \
  --weight_decay 0.01 \
  --adam_beta1 0.9 \
  --adam_beta2 0.98 \
  --adam_eps 1e-6 \
  --total_training_time 24.0 \
  --early_exit_time_marker 24.0 \
  --dataset_path <dataset path> \
  --output_dir /tmp/training-out \
  --print_steps 100 \
  --num_epochs_between_checkpoints 10000 \
  --job_name pretraining_experiment \
  --project_name budget-bert-pretraining \
  --validation_epochs 3 \
  --validation_epochs_begin 1 \
  --validation_epochs_end 1 \
  --validation_begin_proportion 0.05 \
  --validation_end_proportion 0.01 \
  --validation_micro_batch 16 \
  --deepspeed \
  --data_loader_type dist \
  --do_validation \
  --use_early_stopping \
  --early_stop_time 180 \
  --early_stop_eval_loss 6 \
  --seed 42 \
  --fp16

Time-based Training

Pretraining can be limited to a time-based value by defining --total_training_time=24.0 (24 hours for example).

Time-based Learning Rate Scheduling

The learning rate can be scheduled to change according to the configured total training time. The argument --total_training_time controls the total time assigned for the trainer to run, and must be specified in order to use time-based learning rate scheduling.

Time-based Learning rate schedule

To select time-based learning rate scheduling, define --lr_schedule time, and define a shape for for the annealing curve (--curve=linear for example, as seen in the figure). The warmup phase of the learning rate is define by specifying a proportion (--warmup_proportion) which accounts for the time-budget proportion available in the training session (as defined by --total_training_time). For example, for a 24 hour training session, warmup_proportion=0.1 would account for 10% of 24 hours, that is, 2.4 hours (or 144 minutes) to reach peak learning rate. The learning rate will then be scheduled to reach 0 at the end of the time budget. We refer to the provided figure for an example.

Checkpoints and Finetune Checkpoints

There are 2 types of checkpoints that can be enabled:

  • Training checkpoint - saves model weights, optimizer state and training args. Defined by --num_epochs_between_checkpoints.
  • Finetuning checkpoint - saves model weights and configuration to be used for finetuning later on. Defined by --finetune_time_markers.

finetune_time_markers can be assigned multiple points in the training time-budget by providing a list of time markers of the overall training progress. For example --finetune_time_markers=0.5 will save a finetuning checkpoint when reaching 50% of training time budget. For multiple finetuning checkpoints, use commas without space 0.5,0.6,0.9.

Validation Scheduling

Enable validation while pre-training with --do_validation

Control the number of epochs between validation runs with --validation_epochs=

To control the amount of validation runs in the beginning and end (running more that validation_epochs) use validation_begin_proportion and validation_end_proportion to specify the proportion of time and, validation_epochs_begin and validation_epochs_end to control the custom values accordingly.

Mixed Precision Training

Mixed precision is supported by adding --fp16. Use --fp16_backend=ds to use Deepspeed's mixed precision backend and --fp16_backend=apex for apex (--fp16_opt controls optimization level).

Finetuning

Use run_glue.py to run finetuning for a saved checkpoint on GLUE tasks.

The finetuning script is identical to the one provided by Huggingface with the addition of our model.

For all possible pretraining arguments see: python run_glue.py -h

Example for finetuning on MRPC:
python run_glue.py \
  --model_name_or_path <path to model> \
  --task_name MRPC \
  --max_seq_length 128 \
  --output_dir /tmp/finetuning \
  --overwrite_output_dir \
  --do_train --do_eval \
  --evaluation_strategy steps \
  --per_device_train_batch_size 32 --gradient_accumulation_steps 1 \
  --per_device_eval_batch_size 32 \
  --learning_rate 5e-5 \
  --weight_decay 0.01 \
  --eval_steps 50 --evaluation_strategy steps \
  --max_grad_norm 1.0 \
  --num_train_epochs 5 \
  --lr_scheduler_type polynomial \
  --warmup_steps 50

Generating Pretraining Commands

We provide a useful script for generating multiple (or single) pretraining commands by using python generate_training_commands.py.

python generate_training_commands.py -h

	--param_file PARAM_FILE Hyperparameter and configuration yaml
  	--job_name JOB_NAME   job name
 	--init_cmd INIT_CMD   initialization command (deepspeed or python directly)

A parameter yaml must be defined with 2 main keys: hyperparameters with argument values defined as a list of possible values, and default_parameters as default values. Each generated command will be a possible combination of the various arguments specified in the hyperparameters section.

Example:

hyperparameters:
  param1: [val1, val2]
  param2: [val1, val2]

default_parameters:
  param3: 0.0

will result in:

deepspeed run_pretraining.py --param1=val1 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val1 --param2=val2 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val2 --param3=0.0

Citation

If you find this paper or this code useful, please cite this paper:

@article{izsak2021,
  author={Izsak, Peter and Berchansky, Moshe and Levy, Omer},
  title={How to Train BERT with an Academic Budget},
  journal={arXiv preprint arXiv:2104.07705},
  url = {https://arxiv.org/abs/2104.07705} 
  year={2021}
}
Owner
Intel Labs
Intel Labs
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023