Training BERT with Compute/Time (Academic) Budget

Overview

Training BERT with Compute/Time (Academic) Budget

This repository contains scripts for pre-training and finetuning BERT-like models with limited time and compute budget. The code is based on the work presented in the following paper:

Peter Izsak, Moshe Berchansky, Omer Levy, How to Train BERT with an Academic Budget - (to appear at EMNLP 2021).

Installation

The pre-training and finetuning scripts are based on Deepspeed and HuggingFace Transformers libraries.

Preliminary Installation

We recommend creating a virtual environment with python 3.6+, PyTorch and apex.

Installation Requirements

pip install -r requirements.txt

We suggest running Deepspeed's utility ds_report and verify Deepspeed components can be compiled (JIT).

Dataset

The dataset directory includes scripts to pre-process the datasets we used in our experiments (Wikipedia, Bookcorpus). See dedicated README for full details.

Pretraining

Pretraining script: run_pretraining.py

For all possible pretraining arguments see: python run_pretraining.py -h

We highly suggest reviewing the various training features we provide within the library.

Example for training with the best configuration presented in our paper (24-layers/1024H/time-based learning rate schedule/fp16):
deepspeed run_pretraining.py \
  --model_type bert-mlm --tokenizer_name bert-large-uncased \
  --hidden_act gelu \
  --hidden_size 1024 \
  --num_hidden_layers 24 \
  --num_attention_heads 16 \
  --intermediate_size 4096 \
  --hidden_dropout_prob 0.1 \
  --attention_probs_dropout_prob 0.1 \
  --encoder_ln_mode pre-ln \
  --lr 1e-3 \
  --train_batch_size 4096 \
  --train_micro_batch_size_per_gpu 32 \
  --lr_schedule time \
  --curve linear \
  --warmup_proportion 0.06 \
  --gradient_clipping 0.0 \
  --optimizer_type adamw \
  --weight_decay 0.01 \
  --adam_beta1 0.9 \
  --adam_beta2 0.98 \
  --adam_eps 1e-6 \
  --total_training_time 24.0 \
  --early_exit_time_marker 24.0 \
  --dataset_path <dataset path> \
  --output_dir /tmp/training-out \
  --print_steps 100 \
  --num_epochs_between_checkpoints 10000 \
  --job_name pretraining_experiment \
  --project_name budget-bert-pretraining \
  --validation_epochs 3 \
  --validation_epochs_begin 1 \
  --validation_epochs_end 1 \
  --validation_begin_proportion 0.05 \
  --validation_end_proportion 0.01 \
  --validation_micro_batch 16 \
  --deepspeed \
  --data_loader_type dist \
  --do_validation \
  --use_early_stopping \
  --early_stop_time 180 \
  --early_stop_eval_loss 6 \
  --seed 42 \
  --fp16

Time-based Training

Pretraining can be limited to a time-based value by defining --total_training_time=24.0 (24 hours for example).

Time-based Learning Rate Scheduling

The learning rate can be scheduled to change according to the configured total training time. The argument --total_training_time controls the total time assigned for the trainer to run, and must be specified in order to use time-based learning rate scheduling.

Time-based Learning rate schedule

To select time-based learning rate scheduling, define --lr_schedule time, and define a shape for for the annealing curve (--curve=linear for example, as seen in the figure). The warmup phase of the learning rate is define by specifying a proportion (--warmup_proportion) which accounts for the time-budget proportion available in the training session (as defined by --total_training_time). For example, for a 24 hour training session, warmup_proportion=0.1 would account for 10% of 24 hours, that is, 2.4 hours (or 144 minutes) to reach peak learning rate. The learning rate will then be scheduled to reach 0 at the end of the time budget. We refer to the provided figure for an example.

Checkpoints and Finetune Checkpoints

There are 2 types of checkpoints that can be enabled:

  • Training checkpoint - saves model weights, optimizer state and training args. Defined by --num_epochs_between_checkpoints.
  • Finetuning checkpoint - saves model weights and configuration to be used for finetuning later on. Defined by --finetune_time_markers.

finetune_time_markers can be assigned multiple points in the training time-budget by providing a list of time markers of the overall training progress. For example --finetune_time_markers=0.5 will save a finetuning checkpoint when reaching 50% of training time budget. For multiple finetuning checkpoints, use commas without space 0.5,0.6,0.9.

Validation Scheduling

Enable validation while pre-training with --do_validation

Control the number of epochs between validation runs with --validation_epochs=

To control the amount of validation runs in the beginning and end (running more that validation_epochs) use validation_begin_proportion and validation_end_proportion to specify the proportion of time and, validation_epochs_begin and validation_epochs_end to control the custom values accordingly.

Mixed Precision Training

Mixed precision is supported by adding --fp16. Use --fp16_backend=ds to use Deepspeed's mixed precision backend and --fp16_backend=apex for apex (--fp16_opt controls optimization level).

Finetuning

Use run_glue.py to run finetuning for a saved checkpoint on GLUE tasks.

The finetuning script is identical to the one provided by Huggingface with the addition of our model.

For all possible pretraining arguments see: python run_glue.py -h

Example for finetuning on MRPC:
python run_glue.py \
  --model_name_or_path <path to model> \
  --task_name MRPC \
  --max_seq_length 128 \
  --output_dir /tmp/finetuning \
  --overwrite_output_dir \
  --do_train --do_eval \
  --evaluation_strategy steps \
  --per_device_train_batch_size 32 --gradient_accumulation_steps 1 \
  --per_device_eval_batch_size 32 \
  --learning_rate 5e-5 \
  --weight_decay 0.01 \
  --eval_steps 50 --evaluation_strategy steps \
  --max_grad_norm 1.0 \
  --num_train_epochs 5 \
  --lr_scheduler_type polynomial \
  --warmup_steps 50

Generating Pretraining Commands

We provide a useful script for generating multiple (or single) pretraining commands by using python generate_training_commands.py.

python generate_training_commands.py -h

	--param_file PARAM_FILE Hyperparameter and configuration yaml
  	--job_name JOB_NAME   job name
 	--init_cmd INIT_CMD   initialization command (deepspeed or python directly)

A parameter yaml must be defined with 2 main keys: hyperparameters with argument values defined as a list of possible values, and default_parameters as default values. Each generated command will be a possible combination of the various arguments specified in the hyperparameters section.

Example:

hyperparameters:
  param1: [val1, val2]
  param2: [val1, val2]

default_parameters:
  param3: 0.0

will result in:

deepspeed run_pretraining.py --param1=val1 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val1 --param2=val2 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val1 --param3=0.0
deepspeed run_pretraining.py --param1=val2 --param2=val2 --param3=0.0

Citation

If you find this paper or this code useful, please cite this paper:

@article{izsak2021,
  author={Izsak, Peter and Berchansky, Moshe and Levy, Omer},
  title={How to Train BERT with an Academic Budget},
  journal={arXiv preprint arXiv:2104.07705},
  url = {https://arxiv.org/abs/2104.07705} 
  year={2021}
}
Owner
Intel Labs
Intel Labs
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022