Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Overview

Surface Reconstruction from 3D Line Segments

Surface reconstruction from 3d line segments.
Langlois, P. A., Boulch, A., & Marlet, R.
In 2019 International Conference on 3D Vision (3DV) (pp. 553-563). IEEE. Project banner

Installation

  • [IMPORTANT NOTE] The plane arrangement is given as a Linux x64 binary. Please let us know if you need it for an other platform/compiler or if you have issues with it.

  • MOSEK 8 :

    • Download
    • Installation instructions.
    • Request a license (free for academics), and put it in ~/mosek/mosek.lic.
    • Set the mosek directory in the MOSEK_DIR environment variable such that <MOSEK_DIR>/8/tools/platform/linux64x86/src/fusion_cxx is a valid path:

    export MOSEK_DIR=/path/to/mosek

    • Make sure that the binaries are available at runtime:

    export LD_LIBRARY_PATH=$MOSEK_DIR/8/tools/platform/linux64x86/bin:$LD_LIBRARY_PATH

  • Clone this repository: git clone https://github.com/palanglois/line-surface-reconstruction.git

  • Go to the directory: cd line-surface-reconstruction

  • CGAL : Version 4.11 is required:

git clone https://github.com/CGAL/cgal.git external/cgal
cd external/cgal
git checkout releases/CGAL-4.11.3
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make
cd ../../..
  • Make a build directory: mkdir build
  • Go to the build directory: cd build
  • Prepare the project with cmake: cmake -DCMAKE_BUILD_TYPE=Release ..
  • Compile the project: make

Examples

  • Out of the box examples are available in demo.sh

  • An example of a full reconstruction procedure from a simple set of images is available here

  • A benchmark example for an artificial textureless scene (with quantitative evaluation) is available here.

Programs

For every program, a simple documentation is available by running ./<program_name> -h

  • ransac_on_lines detects planes in a line set.
  • line_based_recons_param performs reconstruction out of a set of lines and detected planes. Computing the linear program is time consuming, but optimizing is way faster. Therefore, this program 1st computes the linear program and enters a loop in which you can manually set the optimization parameters in order to find the optimal ones for your reconstruction.
  • line_based_recons does the same as line_based_recons_param but the optimization parameters are set directly in the command line. Use it only if you know the optimal parameters for the reconstruction.
  • mesh_metrics provides evaluation metrics between two meshes.

Visualization

Reconstruction .ply files can be visualized directly in programs such as Meshlab or CloudCompare.

A simple OpenGL viewer is available to directly visualize the json line files.

Raw data

The raw data for Andalusian and HouseInterior is available here. For both examples, it includes the raw images as well as the full calibration in .nvm (VisualSFM) format.

For HouseInterior, a ground truth mesh is also available.

License

Apart from the code located in the external directory, all the code is provided under the GPL license.

The binaries and code provided in the external/PolyhedralComplex directory is provided under the Creative Commons CC-BY-SA license.

If these licenses do not suit your needs, please get in touch with us.

Citing this work

@inproceedings{langlois:hal-02344362,
TITLE = {{Surface Reconstruction from 3D Line Segments}},
AUTHOR = {Langlois, Pierre-Alain and Boulch, Alexandre and Marlet, Renaud},
URL = {https://hal.archives-ouvertes.fr/hal-02344362},
BOOKTITLE = {{2019 International Conference on 3D Vision (3DV)}},
ADDRESS = {Qu{\'e}bec City, Canada},
PUBLISHER = {{IEEE}},
PAGES = {553-563},
YEAR = {2019},
MONTH = Sep,
DOI = {10.1109/3DV.2019.00067},
} 
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Rainbow: Combining Improvements in Deep Reinforcement Learning

Rainbow Rainbow: Combining Improvements in Deep Reinforcement Learning [1]. Results and pretrained models can be found in the releases. DQN [2] Double

Kai Arulkumaran 1.4k Dec 29, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023