Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Overview

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

This is an accompanying repository to the ICAIL 2021 paper entitled "Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains". All the data and the code used in the experiments reported in the paper are to be found here.

Data

The data set consists of 807 adjudicatory decisions from 7 different countries (6 languages) annotated in terms of the following type system:

  • Out of Scope - Parts outside of the main document body (e.g., metadata, editorial content, dissents, end notes, appendices).
  • Heading - Typically an incomplete sentence or marker starting a section (e.g., “Discussion,” “Analysis,” “II.”).
  • Background - The part where the court describes procedural history, relevant facts, or the parties’ claims.
  • Analysis - The section containing reasoning of the court, issues, and application of law to the facts of the case.
  • Introductory Summary - A brief summary of the case at the beginning of the decision.
  • Outcome - A few sentences stating how the case was decided (i.e, the overall outcome of the case).

The country specific subsets:

  • Canada - Random selection of cases retrieved from www.canlii.org from multiple provinces. The selection is not limited to any specific topic or court.
  • Czech Republic - A random selection of cases from Constitutional Court (30), Supreme Court (40), and Supreme Administrative Court (30). Temporal distribution was taken into account.
  • France - A selection of cases decided by Cour de cassation between 2011 and 2019. A stratified sampling based on the year of publication of the decision was used to select the cases.
  • Germany - A stratified sample from the federal jurisprudence database spanning all federal courts (civil, criminal, labor, finance, patent, social, constitutional, and administrative).
  • Italy - The top 100 cases of the criminal courts stored between 2015 and 2020 mentioning “stalking” and keyed to the Article 612 bis of the Criminal Code.
  • Poland - A stratified sample from trial-level, appellate, administrative courts, the Supreme Court, and the Constitutional tribunal. The cases mention “democratic country ruled by law.”
  • U.S.A. I - Federal district court decisions in employment law mentioning “motion for summary judgment,” “employee,” and “independent contractor.”
  • U.S.A. II - Administrative decisions from the U.S. Department of Labor. Top 100 ordered in reverse chronological rulings order, starting in October 2020, were selected.

For more detailed information, please, refer to the original paper.

How to Use

ICAIL 2021 Data

The data used in the ICAIL 2021 experiments can be found in the following paths:

data/Country-Language-*/annotator-*-ICAIL2021.csv

Note that the Canadian subset could not be included in this repository due to concerns about personal information protection in Canada. However, it can be obtained upon request at [email protected]. Once you obtain the data, you just need to create data/Canada-EN-1 directory and place all the files there.

If you would like to experiment with different preprocessing techniques the original texts are placed in the following paths:

data/Country-Language-*/texts

You can find the annotations corresponding to these texts here:

data/Country-Language-*/annotator-*.csv

The texts cleaned of the Out of Scope and Heading segments (via dataset_clean.py) are placed in the following paths:

data/Country-Language-*/texts-clean-annotator-*

Note that the processing depends on annotations. Hence, there are several versions of documents at this stage if there were multiple annotators. The annotations corresponding to the cleaned texts are here:

data/Country-Language-*/annotator-*-clean.csv

The dataset_ICAIL2021.py has the processing code that has been applied to the cleaned texts and annotations to generate the ICAIL 2021 dataset (see above). Note, that the code will skip the Czech Republic subset by default. This is because this subset requires an external resource for sentence segmentation (czech-pdt-ud-X.X-XXXXXX.udpipe). You first need to obtain the file at https://universaldependencies.org/. Then, you need to place it into the data directory. Then, you can remove the Czech_Republic-CZ-1 string from the EXCLUDED tuple in dataset_ICAIL2021.py. Finally, you need to replace the data/czech-pdt-ud-2.5-191206.udpipe string in the utils.py to correspond to the file that you have downloaded. After these changes, the code will also operate on the Czech Republic part of the dataset.

Dataset Statistics

To replicate the inter-annotator agreement analysis performed in the ICAIL 2021 paper you can use the ia_agreement.ipynb notebook.

To generate the dataset statistics reported in the ICAIL 2021 paper you can use the dataset_statistics.ipynb notebook.

Experiments

The file ICAIL2021_experiments.ipynb contains the code necessary to run the code presented in the paper. This includes the code to embed the sentences of the cases into a multilingual vector representation, the definition of the Gated Recurrent Unit model and the code to train and evaluated along the different experiments described in the paper. It also contains the code to create the visualizations presented in the discussion section of the paper.

The notebook can be run in two different ways:

Attribution

We kindly ask you to cite the following paper:

@inproceedings{savelka2021,
    title={Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains},
    author={Jaromir Savelka and Hannes Westermann and Karim Benyekhlef and Charlotte S. Alexander and Jayla C. Grant and David Restrepo Amariles and Rajaa El Hamdani and S\'{e}bastien Mee\`{u}s and Aurore Troussel and Micha\l\ Araszkiewicz and Kevin D. Ashley and Alexandra Ashley and Karl Branting and Mattia Falduti and Matthias Grabmair and Jakub Hara\v{s}ta and Tereza Novotn\'a, Elizabeth Tippett and Shiwanni Johnson},
    year={2021},
    booktitle={Proceedings of the 18th International Conference on Artificial Intelligence and Law},
    publisher={Association for Computing Machinery},
    doi={10.1145/3462757.3466149}
}

Jaromir Savelka, Hannes Westermann, Karim Benyekhlef, Charlotte S. Alexander, Jayla C. Grant, David Restrepo Amariles, Rajaa El Hamdani, Sébastien Meeùs, Aurore Troussel, Michał Araszkiewicz, Kevin D. Ashley, Alexandra Ashley, Karl Branting, Mattia Falduti, Matthias Grabmair, Jakub Harašta, Tereza Novotná, Elizabeth Tippett, and Shiwanni Johnson. 2021. Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains. In Eighteenth International Conference for Artificial Intelligence and Law (ICAIL’21), June 21–25, 2021, São Paulo, Brazil. ACM, New York,NY, USA, 10 pages. https://doi.org/10.1145/3462757.3466149

This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
TianyuQi 10 Dec 11, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022