Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

Related tags

Deep LearningSGMNet
Overview

SGMNet Implementation

Framework

PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-Lan Tai, Long Quan.

This work focuses on keypoint-based image matching problem. We mitigate the qudratic complexity issue for typical GNN-based matching by leveraging a restrited set of pre-matched seeds.

This repo contains training, evaluation and basic demo sripts used in our paper. As baseline, it also includes our implementation for SuperGlue. If you find this project useful, please cite:

@article{chen2021sgmnet,
  title={Learning to Match Features with Seeded Graph Matching Network},
  author={Chen, Hongkai and Luo, Zixin and Zhang, Jiahui and Zhou, Lei and Bai, Xuyang and Hu, Zeyu and Tai, Chiew-Lan and Quan, Long},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Part of the code is borrowed or ported from

SuperPoint, for SuperPoint implementation,

SuperGlue, for SuperGlue implementation and exact auc computation,

OANet, for training scheme,

PointCN, for implementaion of PointCN block and geometric transformations,

FM-Bench, for evaluation of fundamental matrix estimation.

Please also cite these works if you find the corresponding code useful.

Requirements

We use PyTorch 1.6, later version should also be compatible. Please refer to requirements.txt for other dependencies.

If you are using conda, you may configure the environment as:

conda create --name sgmnet python=3.7 -y && \
pip install -r requirements.txt && \
conda activate sgmnet

Get started

Clone the repo:

git clone https://github.com/vdvchen/SGMNet.git && \

download model weights from here

extract weights by

tar -xvf weights.tar.gz

A quick demo for image matching can be called by:

cd demo && python demo.py --config_path configs/sgm_config.yaml

The resutls will be saved as match.png in demo folder. You may configure the matcher in corresponding yaml file.

Evaluation

We demonstrate evaluation process with RootSIFT and SGMNet. Evaluation with other features/matchers can be conducted by configuring the corresponding yaml files.

1. YFCC Evaluation

Refer to OANet repo to download raw YFCC100M dataset

Data Generation

  1. Configure datadump/configs/yfcc_root.yaml for the following entries

    rawdata_dir: path for yfcc rawdata
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/yfcc_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. yfcc_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/yfcc_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for yfcc_rawdata
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/yfcc_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.634 0.729 0.783 0.818 0.843 0.861]
exact auc: [0.355 0.552 0.655 0.719 0.762 0.793]
mean match score: 17.06
mean precision: 86.08

2. ScanNet Evaluation

Download processed ScanNet evaluation data.

Data Generation

  1. Configure datadump/configs/scannet_root.yaml for the following entries

    rawdata_dir: path for ScanNet raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/scannet_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. scannet_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/scannet_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for ScanNet evaluation data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/scannet_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.322 0.427 0.493 0.541 0.577 0.606]
exact auc: [0.125 0.283 0.383 0.452 0.503 0.541]
mean match score: 8.79
mean precision: 45.54

3. FM-Bench Evaluation

Refer to FM-Bench repo to download raw FM-Bench dataset

Data Generation

  1. Configure datadump/configs/fmbench_root.yaml for the following entries

    rawdata_dir: path for fmbench raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (4k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/fmbench_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. fmbench_root_4000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/fm_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for fmbench raw data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/fm_eval_sgm.yaml

For 4k RootSIFT matching, similar results as below should be obtained,

CPC results:
F_recall:  0.617
precision:  0.7489
precision_post:  0.8399
num_corr:  663.838
num_corr_post:  284.455  

KITTI results:
F_recall:  0.911
precision:  0.9035133886251774
precision_post:  0.9837278538989989
num_corr:  1670.548
num_corr_post:  1121.902

TUM results:
F_recall:  0.666
precision:  0.6520260208250837
precision_post:  0.731507123852191
num_corr:  1650.579
num_corr_post:  941.846

Tanks_and_Temples results:
F_recall:  0.855
precision:  0.7452896681043316
precision_post:  0.8020184635328004
num_corr:  946.571
num_corr_post:  466.865

4. Run time and memory Evaluation

We provide a script to test run time and memory consumption, for a quick start, run

cd evaluation
python eval_cost.py --matcher_name SGM  --config_path configs/cost/sgm_cost.yaml --num_kpt=4000

You may configure the matcher in corresponding yaml files.

Visualization

For visualization of matching results on different dataset, add --vis_folder argument on evaluation command, e.g.

cd evaluation
python evaluate.py --config_path configs/eval/***.yaml --vis_folder visualization

Training

We train both SGMNet and SuperGlue on GL3D dataset. The training data is pre-generated in an offline manner, which yields about 400k pairs in total.

To generate training/validation dataset

  1. Download GL3D rawdata

  2. Configure datadump/configs/gl3d.yaml. Some important entries are

    rawdata_dir: path for GL3D raw data
    feature_dump_dir: path for extracted features
    dataset_dump_dir: path for generated dataset
    pairs_per_seq: number of pairs sampled for each sequence
    angle_th: angle threshold for sampled pairs
    overlap_th: common track threshold for sampled pairs
    extractor: configuration for keypoint extractor

  3. dump dataset by

cd datadump
python dump.py --config_path configs/gl3d.yaml

Two parts of data will be generated. (1) Extracted features and keypoints will be placed under feature_dump_dir (2) Pairwise dataset will be placed under dataset_dump_dir.

  1. After data generation, configure train/train_sgm.sh for necessary entries, including
    rawdata_path: path for GL3D raw data
    desc_path: path for extracted features
    dataset_path: path for generated dataset
    desc_suffix: suffix for keypoint files, _root_1000.hdf5 for 1k RootSIFT by default.
    log_base: log directory for training

  2. run SGMNet training scripts by

bash train_sgm.sh

our training scripts support multi-gpu training, which can be enabled by configure train/train_sgm.sh for these entries

CUDA_VISIBLE_DEVICES: id of gpus to be used
nproc_per_node: number of gpus to be used

run SuperGlue training scripts by

bash train_sg.sh
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
A command line simple note taking app

Why yet another note taking program? note was designed with a very specific target in mind: me, and my 2354 scraps of paper. It runs from the command

64 Nov 20, 2022
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Fang Zhonghao 13 Nov 19, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022