STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

Overview

Hits

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

Keon Lee, Kyumin Park, Daeyoung Kim

In our paper, we propose STYLER, a non-autoregressive TTS framework with style factor modeling that achieves rapidity, robustness, expressivity, and controllability at the same time.

Abstract: Previous works on neural text-to-speech (TTS) have been addressed on limited speed in training and inference time, robustness for difficult synthesis conditions, expressiveness, and controllability. Although several approaches resolve some limitations, there has been no attempt to solve all weaknesses at once. In this paper, we propose STYLER, an expressive and controllable TTS framework with high-speed and robust synthesis. Our novel audio-text aligning method called Mel Calibrator and excluding autoregressive decoding enable rapid training and inference and robust synthesis on unseen data. Also, disentangled style factor modeling under supervision enlarges the controllability in synthesizing process leading to expressive TTS. On top of it, a novel noise modeling pipeline using domain adversarial training and Residual Decoding empowers noise-robust style transfer, decomposing the noise without any additional label. Various experiments demonstrate that STYLER is more effective in speed and robustness than expressive TTS with autoregressive decoding and more expressive and controllable than reading style non-autoregressive TTS. Synthesis samples and experiment results are provided via our demo page, and code is available publicly.

Dependencies

Please install the python dependencies given in requirements.txt.

pip3 install -r requirements.txt

Training

Preparation

Clean Data

  1. Download VCTK dataset and resample audios to a 22050Hz sampling rate.
  2. We provide a bash script for the resampling. Refer to data/resample.sh for the detail.
  3. Put audio files and corresponding text (transcript) files in the same directory. Both audio and text files must have the same name, excluding the extension.
  4. You may need to trim the audio for stable model convergence. Refer to Yeongtae's preprocess_audio.py for helpful preprocessing, including the trimming.
  5. Modify the hp.data_dir in hparams.py.

Noisy Data

  1. Download WHAM! dataset and resample audios to a 22050Hz sampling rate.
  2. Modify the hp.noise_dir in hparams.py.

Vocoder

  1. Unzip hifigan/generator_universal.pth.tar.zip in the same directory.

Preprocess

First, download ResCNN Softmax+Triplet pretrained model of philipperemy's DeepSpeaker for the speaker embedding as described in our paper and locate it in hp.speaker_embedder_dir.

Second, download the Montreal Forced Aligner(MFA) package and the pretrained (LibriSpeech) lexicon file through the following commands. MFA is used to obtain the alignments between the utterances and the phoneme sequences as FastSpeech2.

wget https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner/releases/download/v1.1.0-beta.2/montreal-forced-aligner_linux.tar.gz
tar -zxvf montreal-forced-aligner_linux.tar.gz

wget http://www.openslr.org/resources/11/librispeech-lexicon.txt -O montreal-forced-aligner/pretrained_models/librispeech-lexicon.txt

Then, process all the necessary features. You will get a stat.txt file in your hp.preprocessed_path/. You have to modify the f0 and energy parameters in the hparams.py according to the content of stat.txt.

python3 preprocess.py

Finally, get the noisy data separately from the clean data by mixing each utterance with a randomly selected piece of background noise from WHAM! dataset.

python3 preprocess_noisy.py

Train

Now you have all the prerequisites! Train the model using the following command:

python3 train.py

Inference

Prepare Texts

Create sentences.py in data/ which has a python list named sentences of texts to be synthesized. Note that sentences can contain more than one text.

# In 'data/sentences.py',
sentences = [
    "Nothing is lost, everything is recycled."
]

Prepare Reference Audios

Reference audio preparation has a similar process to training data preparation. There could be two kinds of references: clean and noisy.

First, put clean audios with corresponding texts in a single directory and modify the hp.ref_audio_dir in hparams.py and process all the necessary features. Refer to the Clean Data section of Train Preparation.

python3 preprocess_refs.py

Then, get the noisy references.

python3 preprocess_noisy.py --refs

Synthesize

The following command will synthesize all combinations of texts in data/sentences.py and audios in hp.ref_audio_dir.

python3 synthesize.py --ckpt CHECKPOINT_PATH

Or you can specify single reference audio in hp.ref_audio_dir as follows.

python3 synthesize.py --ckpt CHECKPOINT_PATH --ref_name AUDIO_FILENAME

Also, there are several useful options.

  1. --speaker_id will specify the speaker. The specified speaker's embedding should be in hp.preprocessed_path/spker_embed. The default value is None, and the speaker embedding is calculated at runtime on each input audio.

  2. --inspection will give you additional outputs that show the effects of each encoder of STYLER. The samples are the same as the Style Factor Modeling section on our demo page.

  3. --cont will generate the samples as the Style Factor Control section on our demo page.

    python3 synthesize.py --ckpt CHECKPOINT_PATH --cont --r1 AUDIO_FILENAME_1 --r2 AUDIO_FILENAME_1

    Note that --cont option is only working on preprocessed data. In detail, the audios' name should have the same format as VCTK dataset (e.g., p323_229), and the preprocessed data must be existing in hp.preprocessed_path.

TensorBoard

The TensorBoard loggers are stored in the log directory. Use

tensorboard --logdir log

to serve the TensorBoard on your localhost. Here are some logging views of the model training on VCTK for 560k steps.

Notes

  1. There were too many noise data where extraction was not possible through pyworld as in clean data. To resolve this, pysptk was applied to extract log f0 for the noisy data's fundamental frequency. The --noisy_input option will automate this process during synthesizing.

  2. If MFA-related problems occur during running preprocess.py, try to manually run MFA by the following command.

    # Replace $data_dir and $PREPROCESSED_PATH with ./VCTK-Corpus-92/wav48_silence_trimmed and ./preprocessed/VCTK/TextGrid, for example
    ./montreal-forced-aligner/bin/mfa_align $YOUR_data_dir montreal-forced-aligner/pretrained_models/librispeech-lexicon.txt english $YOUR_PREPROCESSED_PATH -j 8
  3. DeepSpeaker on VCTK dataset shows clear identification among speakers. The following figure shows the T-SNE plot of extracted speaker embedding in our experiments.

  4. Currently, preprocess.py divides the dataset into two subsets: train and validation set. If you need other sets, such as a test set, the only thing to do is modifying the text files (train.txt or val.txt) in hp.preprocessed_path/.

Citation

If you would like to use or refer to this implementation, please cite our paper with the repo.

@article{lee2021styler,
  title={STYLER: Style Modeling with Rapidity and Robustness via SpeechDecomposition for Expressive and Controllable Neural Text to Speech},
  author={Lee, Keon and Park, Kyumin and Kim, Daeyoung},
  journal={arXiv preprint arXiv:2103.09474},
  year={2021}
}

References

Comments
  • some questions

    some questions

    1.in paper, why output of encoder (text_encoding) upsample and downsample? 2. what is the meaning of text_encoding_neck+pitch_encoding、text_encoding_neck+energy_encoding? why not cat?

    opened by Pydataman 3
  • Low resource languages that won't work with MFA?

    Low resource languages that won't work with MFA?

    Is there a way to fine tune a model or training two languages side by side such that a very low resource language can be trained with the voices of a high resource language?

    opened by michael-conrad 3
  • Undefined names

    Undefined names

    Hi, I noticed some undefined names around the code:

    synthesize.py:495:67: F821 undefined name 'reference' noise_mixer_refs.py:56:42: F821 undefined name 'eps' noise_mixer_refs.py:59:40: F821 undefined name 'eps'

    opened by L3str4nge 2
  • About the pre-process

    About the pre-process

    Hi, I want to ask the trimming operation whether is very important for training your model? Furthermore, can you share the scripts to trimming VCTK dataset?

    opened by yangdongchao 0
  • Bump tensorflow from 2.4.0 to 2.5.1

    Bump tensorflow from 2.4.0 to 2.5.1

    Bumps tensorflow from 2.4.0 to 2.5.1.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.5.1

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse (CVE-2021-37656)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixDiagV* ops (CVE-2021-37657)
    • Fixes an undefined behavior arising from reference binding to nullptr in MatrixSetDiagV* ops (CVE-2021-37658)
    • Fixes an undefined behavior arising from reference binding to nullptr and heap OOB in binary cwise ops (CVE-2021-37659)
    • Fixes a division by 0 in inplace operations (CVE-2021-37660)
    • Fixes a crash caused by integer conversion to unsigned (CVE-2021-37661)
    • Fixes an undefined behavior arising from reference binding to nullptr in boosted trees (CVE-2021-37662)
    • Fixes a heap OOB in boosted trees (CVE-2021-37664)
    • Fixes vulnerabilities arising from incomplete validation in QuantizeV2 (CVE-2021-37663)
    • Fixes vulnerabilities arising from incomplete validation in MKL requantization (CVE-2021-37665)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToVariant (CVE-2021-37666)
    • Fixes an undefined behavior arising from reference binding to nullptr in unicode encoding (CVE-2021-37667)
    • Fixes an FPE in tf.raw_ops.UnravelIndex (CVE-2021-37668)
    • Fixes a crash in NMS ops caused by integer conversion to unsigned (CVE-2021-37669)
    • Fixes a heap OOB in UpperBound and LowerBound (CVE-2021-37670)
    • Fixes an undefined behavior arising from reference binding to nullptr in map operations (CVE-2021-37671)
    • Fixes a heap OOB in SdcaOptimizerV2 (CVE-2021-37672)
    • Fixes a CHECK-fail in MapStage (CVE-2021-37673)
    • Fixes a vulnerability arising from incomplete validation in MaxPoolGrad (CVE-2021-37674)
    • Fixes an undefined behavior arising from reference binding to nullptr in shape inference (CVE-2021-37676)
    • Fixes a division by 0 in most convolution operators (CVE-2021-37675)
    • Fixes vulnerabilities arising from missing validation in shape inference for Dequantize (CVE-2021-37677)
    • Fixes an arbitrary code execution due to YAML deserialization (CVE-2021-37678)
    • Fixes a heap OOB in nested tf.map_fn with RaggedTensors (CVE-2021-37679)

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.5.1

    This release introduces several vulnerability fixes:

    • Fixes a heap out of bounds access in sparse reduction operations (CVE-2021-37635)
    • Fixes a floating point exception in SparseDenseCwiseDiv (CVE-2021-37636)
    • Fixes a null pointer dereference in CompressElement (CVE-2021-37637)
    • Fixes a null pointer dereference in RaggedTensorToTensor (CVE-2021-37638)
    • Fixes a null pointer dereference and a heap OOB read arising from operations restoring tensors (CVE-2021-37639)
    • Fixes an integer division by 0 in sparse reshaping (CVE-2021-37640)
    • Fixes a division by 0 in ResourceScatterDiv (CVE-2021-37642)
    • Fixes a heap OOB in RaggedGather (CVE-2021-37641)
    • Fixes a std::abort raised from TensorListReserve (CVE-2021-37644)
    • Fixes a null pointer dereference in MatrixDiagPartOp (CVE-2021-37643)
    • Fixes an integer overflow due to conversion to unsigned (CVE-2021-37645)
    • Fixes a bad allocation error in StringNGrams caused by integer conversion (CVE-2021-37646)
    • Fixes a null pointer dereference in SparseTensorSliceDataset (CVE-2021-37647)
    • Fixes an incorrect validation of SaveV2 inputs (CVE-2021-37648)
    • Fixes a null pointer dereference in UncompressElement (CVE-2021-37649)
    • Fixes a segfault and a heap buffer overflow in {Experimental,}DatasetToTFRecord (CVE-2021-37650)
    • Fixes a heap buffer overflow in FractionalAvgPoolGrad (CVE-2021-37651)
    • Fixes a use after free in boosted trees creation (CVE-2021-37652)
    • Fixes a division by 0 in ResourceGather (CVE-2021-37653)
    • Fixes a heap OOB and a CHECK fail in ResourceGather (CVE-2021-37654)
    • Fixes a heap OOB in ResourceScatterUpdate (CVE-2021-37655)
    • Fixes an undefined behavior arising from reference binding to nullptr in RaggedTensorToSparse

    ... (truncated)

    Commits
    • 8222c1c Merge pull request #51381 from tensorflow/mm-fix-r2.5-build
    • d584260 Disable broken/flaky test
    • f6c6ce3 Merge pull request #51367 from tensorflow-jenkins/version-numbers-2.5.1-17468
    • 3ca7812 Update version numbers to 2.5.1
    • 4fdf683 Merge pull request #51361 from tensorflow/mm-update-relnotes-on-r2.5
    • 05fc01a Put CVE numbers for fixes in parentheses
    • bee1dc4 Update release notes for the new patch release
    • 47beb4c Merge pull request #50597 from kruglov-dmitry/v2.5.0-sync-abseil-cmake-bazel
    • 6f39597 Merge pull request #49383 from ashahab/abin-load-segfault-r2.5
    • 0539b34 Merge pull request #48979 from liufengdb/r2.5-cherrypick
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v1.0.0)
Owner
Keon Lee
Expressive Speech Synthesis | Disentangled Representation | Generative Models | NLP | HCI
Keon Lee
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022