a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

Related tags

Deep LearningUDL
Overview

UDL

UDL is a practicable framework used in Deep Learning (computer vision).

Benchmark

codes, results and models are available in UDL, please contact @Liang-Jian Deng (corresponding author)

Pansharpening model zoo:
  • PNN (RS'2016)
  • PanNet (CVPR'2017)
  • DiCNN1 (JSTAR'2019)
  • FusionNet (TGRS'2020)
  • DCFNet (ICCV'2021)

Results of DCFNet

Quantitative results

wv3 SAM ERGAS
new_data10 3.934 2.531
new_data11 4.133 2.630
new_data12_512 4.108 2.712
new_data6 2.638 1.461
new_data7 3.866 2.820
new_data8 3.257 2.210
new_data9 4.154 2.718
Avg(std) 3.727(0.571) 2.440(0.474)
Ideal Value 0 0
wv3_1258 SAM ERGAS
Avg(std) 3.377(1.200) 2.257(0.910)
Ideal Value 0 0

Visual results

please see the paper and the sub-directory: ./UDL/results/DCFNet

Install [Option]

please run python setup.py develop

Usage

open UDL/panshaprening/tests, run the following code:

python run_DCFNet.py

Note that default configures don't fit other environments, you can modify configures in pansharpening/models/DCFNet/option_DCFNet.py.

Benefit from mmcv/config.py, the project has the global configures in Basis/option.py, option_DCFNet inherits directly from Basis/option.py.

1. Data preparation

You need to download WorldView-3 datasets.

The directory tree should be look like this:

|-$ROOT/datasets
├── pansharpening
│   ├── training_data
│   │   ├── train_wv3_10000.h5
│   │   ├── valid_wv3_10000.h5
│   ├── test_data
│   │   ├── WV3_Simu
│   │   │   ├── new_data6.mat
│   │   │   ├── new_data7.mat
│   │   │   ├── ...
│   │   ├── WV3_Simu_mulExm
│   │   │   ├── test1_mulExm1258.mat

2. Training

args.eval = False, args.dataset='wv3'

3. Inference

args.eval = True, args.dataset='wv3_singleMat'

Plannings

Please expect more tasks and models

  • pansharpening

    • models
  • derain

    • models
  • HISR

    • models

Contribution

We appreciate all contributions to improve UDL. Looking forward to your contribution to UDL.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@InProceedings{Wu_2021_ICCV,
    author    = {Wu, Xiao and Huang, Ting-Zhu and Deng, Liang-Jian and Zhang, Tian-Jing},
    title     = {Dynamic Cross Feature Fusion for Remote Sensing Pansharpening},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14687-14696}
}

Acknowledgement

  • MMCV: OpenMMLab foundational library for computer vision.
  • HRNet : High-resolution networks and Segmentation Transformer for Semantic Segmentation

License & Copyright

This project is open sourced under GNU General Public License v3.0

Owner
Xiao Wu
Xiao Wu
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
SPTAG: A library for fast approximate nearest neighbor search

SPTAG: A library for fast approximate nearest neighbor search SPTAG SPTAG (Space Partition Tree And Graph) is a library for large scale vector approxi

Microsoft 4.3k Jan 01, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
This repository contains the DendroMap implementation for scalable and interactive exploration of image datasets in machine learning.

DendroMap DendroMap is an interactive tool to explore large-scale image datasets used for machine learning. A deep understanding of your data can be v

DIV Lab 33 Dec 30, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
VR-Caps: A Virtual Environment for Active Capsule Endoscopy

VR-Caps: A Virtual Environment for Capsule Endoscopy Overview We introduce a virtual active capsule endoscopy environment developed in Unity that prov

DeepMIA Lab 90 Dec 27, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022