Simple codebase for flexible neural net training

Overview

neural-modular

Simple codebase for flexible neural net training.

Allows for seamless exchange of models, dataset, and optimizers.

Uses hydra for config-building and logging.

Option to enable wandb for run-tracking and cloud-storage.

Run python main.py to train your model.

Understanding the Code

  • main.py is the main entry point

  • conf/config.yaml is the default config in standard Hydra syntax:

    • by running python main.py +experiments=blabla.yaml you can overwrite and extend the config by whatever you put in experiments/blabla.yaml.
    • alternatively you can run python main.py +new=arg to add new to the config, or python main.py new=arg to overwrite key new
  • using the config, we then instantiate a dataset from neural.datasets and a model from neural.models

  • model and dataset are then given to the trainer neural.train.Trainer which further instantiates optimizers, schedulers, and the losses

  • we then train the model to convergence and checkpoint the final model

  • see neural.utils.restore for how to restore a model/trainer instance

Owner
Jannik Kossen
PhD Student at OATML Oxford
Jannik Kossen
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaรซl Fijalkow 24 Oct 23, 2022
๐Ÿค— Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | ็ฎ€ไฝ“ไธญๆ–‡ | ็น้ซ”ไธญๆ–‡ | ํ•œ๊ตญ์–ด State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow ๐Ÿค— Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
ร–zlem TaลŸkฤฑn 0 Feb 23, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch ์•ˆ๋…•ํ•˜์„ธ์š”. ์ €๋Š” TUNiB์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด๋กœ ๊ทผ๋ฌด ์ค‘์ธ ๊ณ ํ˜„์›…์ž…๋‹ˆ๋‹ค. ์ด ์ž๋ฃŒ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด๋ชจ๋ธ ๊ฐœ๋ฐœ์— ํ•„์š”ํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ๋“ค์„ ์†Œ๊ฐœ๋“œ๋ฆฌ๊ธฐ ์œ„ํ•ด ๋งˆ๋ จํ•˜์˜€์œผ๋ฉฐ ๊ธฐ๋ณธ์ ์œผ๋กœ

TUNiB 172 Dec 29, 2022
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022