Defending graph neural networks against adversarial attacks (NeurIPS 2020)

Overview

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected])

Project website

Overview

This repository contains python codes and datasets necessary to run the GNNGuard algorithm. GNNGuard is a general defense approach against a variety of poisoning adversarial attacks that perturb the discrete graph structure. GNNGuard can be straightforwardly incorporated into any GNN models to prevent the misclassification caused by poisoning adversarial attacks on graphs. Please see our paper for more details on the algorithm.

Key Idea of GNNGuard

Deep learning methods for graphs achieve remarkable performance on many tasks. However, despite the proliferation of such methods and their success, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). By integrating with the proposed GNNGuard, the GNN classifier can correctly classify the target node even under strong adversarial attacks.

The key idea of GNNGuard is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack. GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. In specific, instead of the neural message passing of typical GNN (shown as A), GNNGuard (B) controls the message stream such as blocking the message from irrelevent neighbors but strengthening messages from highly-related ones. Importantly, we are the first model that can defend heterophily graphs (\eg, with structural equivalence) while all the existing defenders only considering homophily graphs.

Running the code

The GNNGuard is evluated under three typical adversarial attacks including Direct Targeted Attack (Nettack-Di), Influence Targeted Attack (Nettack-In), and Non-Targeted Attack (Mettack). In GNNGuard folder, the Nettack-Di.py, Nettack-In.py, and Mettack.py corresponding to the three adversarial attacks.

For example, to check the performance of GCN without defense under direct targeted attack, run the following code:

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard False

Turn on the GNNGuard defense, run

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard True

Note: Please uncomment the defense models (Line 144 for Nettack-Di.py) to test different defense models.

Citing

If you find GNNGuard useful for your research, please consider citing this paper:

@inproceedings{zhang2020gnnguard,
title     = {GNNGuard: Defending Graph Neural Networks against Adversarial Attacks},
author    = {Zhang, Xiang and Zitnik, Marinka},
booktitle = {NeurIPS},
year      = {2020}
}

Requirements

GNNGuard is tested to work under Python >=3.5.

Recent versions of Pytorch, torch-geometric, numpy, and scipy are required. All the required basic packages can be installed using the following command: ''' pip install -r requirements.txt ''' Note: For toch-geometric and the related dependices (e.g., cluster, scatter, sparse), the higher version may work but haven't been tested yet.

Install DeepRobust

During the evaluation, the adversarial attacks on graph are performed by DeepRobust from MSU, please install it by

git clone https://github.com/DSE-MSU/DeepRobust.git
cd DeepRobust
python setup.py install
  1. If you have trouble in installing DeepRobust, please try to replace the provided 'defense/setup.py' to replace the original DeepRobust-master/setup.py and manully reinstall it by
python setup.py install
  1. We extend the original DeepRobust from single GCN to multiplye GNN variants including GAT, GIN, Jumping Knowledge, and GCN-SAINT. After installing DeepRobust, please replace the origininal folder DeepRobust-master/deeprobust/graph/defense by the defense folder that provided in our repository!

  2. To better plugin GNNGuard to geometric codes, we slightly revised some functions in geometric. Please use the three files under our provided nn/conv/ to replace the corresponding files in the installed geometric folder (for example, the folder path could be /home/username/.local/lib/python3.5/site-packages/torch_geometric/nn/conv/).

Note: 1). Don't forget to backup all the original files when you replacing anything, in case you need them at other places! 2). Please install the corresponding CUDA versions if you are using GPU.

Datasets

Here we provide the datasets (including Cora, Citeseer, ogbn-arxiv, and DP) used in GNNGuard paper.

The ogbn-arxiv dataset can be easily access by python codes:

from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = 'ogbn-arxiv')

More details about ogbn-arxiv dataset can be found here.

Find more details about Disease Pathway dataset at here.

For graphs with structural roles, a prominent type of heterophily, we calculate the nodes' similarity using graphlet degree vector instead of node embedding. The graphlet degree vector is generated/counted based on the Orbit Counting Algorithm (Orca).

Miscellaneous

Please send any questions you might have about the code and/or the algorithm to [email protected].

License

GNNGuard is licensed under the MIT License.

Owner
Zitnik Lab @ Harvard
Machine Learning for Medicine and Science
Zitnik Lab @ Harvard
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder

ASEGAN: Speech Enhancement Generative Adversarial Network Based on Asymmetric AutoEncoder 中文版简介 Readme with English Version 介绍 基于SEGAN模型的改进版本,使用自主设计的非

Nitin 53 Nov 17, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Pose estimation with MoveNet Lightning

Pose Estimation With MoveNet Lightning MoveNet is the TensorFlow pre-trained model that identifies 17 different key points of the human body. It is th

Yash Vora 2 Jan 04, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022