Defending graph neural networks against adversarial attacks (NeurIPS 2020)

Overview

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected])

Project website

Overview

This repository contains python codes and datasets necessary to run the GNNGuard algorithm. GNNGuard is a general defense approach against a variety of poisoning adversarial attacks that perturb the discrete graph structure. GNNGuard can be straightforwardly incorporated into any GNN models to prevent the misclassification caused by poisoning adversarial attacks on graphs. Please see our paper for more details on the algorithm.

Key Idea of GNNGuard

Deep learning methods for graphs achieve remarkable performance on many tasks. However, despite the proliferation of such methods and their success, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). By integrating with the proposed GNNGuard, the GNN classifier can correctly classify the target node even under strong adversarial attacks.

The key idea of GNNGuard is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack. GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. In specific, instead of the neural message passing of typical GNN (shown as A), GNNGuard (B) controls the message stream such as blocking the message from irrelevent neighbors but strengthening messages from highly-related ones. Importantly, we are the first model that can defend heterophily graphs (\eg, with structural equivalence) while all the existing defenders only considering homophily graphs.

Running the code

The GNNGuard is evluated under three typical adversarial attacks including Direct Targeted Attack (Nettack-Di), Influence Targeted Attack (Nettack-In), and Non-Targeted Attack (Mettack). In GNNGuard folder, the Nettack-Di.py, Nettack-In.py, and Mettack.py corresponding to the three adversarial attacks.

For example, to check the performance of GCN without defense under direct targeted attack, run the following code:

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard False

Turn on the GNNGuard defense, run

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard True

Note: Please uncomment the defense models (Line 144 for Nettack-Di.py) to test different defense models.

Citing

If you find GNNGuard useful for your research, please consider citing this paper:

@inproceedings{zhang2020gnnguard,
title     = {GNNGuard: Defending Graph Neural Networks against Adversarial Attacks},
author    = {Zhang, Xiang and Zitnik, Marinka},
booktitle = {NeurIPS},
year      = {2020}
}

Requirements

GNNGuard is tested to work under Python >=3.5.

Recent versions of Pytorch, torch-geometric, numpy, and scipy are required. All the required basic packages can be installed using the following command: ''' pip install -r requirements.txt ''' Note: For toch-geometric and the related dependices (e.g., cluster, scatter, sparse), the higher version may work but haven't been tested yet.

Install DeepRobust

During the evaluation, the adversarial attacks on graph are performed by DeepRobust from MSU, please install it by

git clone https://github.com/DSE-MSU/DeepRobust.git
cd DeepRobust
python setup.py install
  1. If you have trouble in installing DeepRobust, please try to replace the provided 'defense/setup.py' to replace the original DeepRobust-master/setup.py and manully reinstall it by
python setup.py install
  1. We extend the original DeepRobust from single GCN to multiplye GNN variants including GAT, GIN, Jumping Knowledge, and GCN-SAINT. After installing DeepRobust, please replace the origininal folder DeepRobust-master/deeprobust/graph/defense by the defense folder that provided in our repository!

  2. To better plugin GNNGuard to geometric codes, we slightly revised some functions in geometric. Please use the three files under our provided nn/conv/ to replace the corresponding files in the installed geometric folder (for example, the folder path could be /home/username/.local/lib/python3.5/site-packages/torch_geometric/nn/conv/).

Note: 1). Don't forget to backup all the original files when you replacing anything, in case you need them at other places! 2). Please install the corresponding CUDA versions if you are using GPU.

Datasets

Here we provide the datasets (including Cora, Citeseer, ogbn-arxiv, and DP) used in GNNGuard paper.

The ogbn-arxiv dataset can be easily access by python codes:

from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = 'ogbn-arxiv')

More details about ogbn-arxiv dataset can be found here.

Find more details about Disease Pathway dataset at here.

For graphs with structural roles, a prominent type of heterophily, we calculate the nodes' similarity using graphlet degree vector instead of node embedding. The graphlet degree vector is generated/counted based on the Orbit Counting Algorithm (Orca).

Miscellaneous

Please send any questions you might have about the code and/or the algorithm to [email protected].

License

GNNGuard is licensed under the MIT License.

Owner
Zitnik Lab @ Harvard
Machine Learning for Medicine and Science
Zitnik Lab @ Harvard
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Repository for the paper titled: "When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer"

When is BERT Multilingual? Isolating Crucial Ingredients for Cross-lingual Transfer This repository contains code for our paper titled "When is BERT M

Princeton Natural Language Processing 9 Dec 23, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022