Defending graph neural networks against adversarial attacks (NeurIPS 2020)

Overview

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks

Authors: Xiang Zhang ([email protected]), Marinka Zitnik ([email protected])

Project website

Overview

This repository contains python codes and datasets necessary to run the GNNGuard algorithm. GNNGuard is a general defense approach against a variety of poisoning adversarial attacks that perturb the discrete graph structure. GNNGuard can be straightforwardly incorporated into any GNN models to prevent the misclassification caused by poisoning adversarial attacks on graphs. Please see our paper for more details on the algorithm.

Key Idea of GNNGuard

Deep learning methods for graphs achieve remarkable performance on many tasks. However, despite the proliferation of such methods and their success, recent findings indicate that small, unnoticeable perturbations of graph structure can catastrophically reduce performance of even the strongest and most popular Graph Neural Networks (GNNs). By integrating with the proposed GNNGuard, the GNN classifier can correctly classify the target node even under strong adversarial attacks.

The key idea of GNNGuard is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack. GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. In specific, instead of the neural message passing of typical GNN (shown as A), GNNGuard (B) controls the message stream such as blocking the message from irrelevent neighbors but strengthening messages from highly-related ones. Importantly, we are the first model that can defend heterophily graphs (\eg, with structural equivalence) while all the existing defenders only considering homophily graphs.

Running the code

The GNNGuard is evluated under three typical adversarial attacks including Direct Targeted Attack (Nettack-Di), Influence Targeted Attack (Nettack-In), and Non-Targeted Attack (Mettack). In GNNGuard folder, the Nettack-Di.py, Nettack-In.py, and Mettack.py corresponding to the three adversarial attacks.

For example, to check the performance of GCN without defense under direct targeted attack, run the following code:

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard False

Turn on the GNNGuard defense, run

python Nettack-Di.py --dataset Cora  --modelname GCN --GNNGuard True

Note: Please uncomment the defense models (Line 144 for Nettack-Di.py) to test different defense models.

Citing

If you find GNNGuard useful for your research, please consider citing this paper:

@inproceedings{zhang2020gnnguard,
title     = {GNNGuard: Defending Graph Neural Networks against Adversarial Attacks},
author    = {Zhang, Xiang and Zitnik, Marinka},
booktitle = {NeurIPS},
year      = {2020}
}

Requirements

GNNGuard is tested to work under Python >=3.5.

Recent versions of Pytorch, torch-geometric, numpy, and scipy are required. All the required basic packages can be installed using the following command: ''' pip install -r requirements.txt ''' Note: For toch-geometric and the related dependices (e.g., cluster, scatter, sparse), the higher version may work but haven't been tested yet.

Install DeepRobust

During the evaluation, the adversarial attacks on graph are performed by DeepRobust from MSU, please install it by

git clone https://github.com/DSE-MSU/DeepRobust.git
cd DeepRobust
python setup.py install
  1. If you have trouble in installing DeepRobust, please try to replace the provided 'defense/setup.py' to replace the original DeepRobust-master/setup.py and manully reinstall it by
python setup.py install
  1. We extend the original DeepRobust from single GCN to multiplye GNN variants including GAT, GIN, Jumping Knowledge, and GCN-SAINT. After installing DeepRobust, please replace the origininal folder DeepRobust-master/deeprobust/graph/defense by the defense folder that provided in our repository!

  2. To better plugin GNNGuard to geometric codes, we slightly revised some functions in geometric. Please use the three files under our provided nn/conv/ to replace the corresponding files in the installed geometric folder (for example, the folder path could be /home/username/.local/lib/python3.5/site-packages/torch_geometric/nn/conv/).

Note: 1). Don't forget to backup all the original files when you replacing anything, in case you need them at other places! 2). Please install the corresponding CUDA versions if you are using GPU.

Datasets

Here we provide the datasets (including Cora, Citeseer, ogbn-arxiv, and DP) used in GNNGuard paper.

The ogbn-arxiv dataset can be easily access by python codes:

from ogb.nodeproppred import PygNodePropPredDataset
dataset = PygNodePropPredDataset(name = 'ogbn-arxiv')

More details about ogbn-arxiv dataset can be found here.

Find more details about Disease Pathway dataset at here.

For graphs with structural roles, a prominent type of heterophily, we calculate the nodes' similarity using graphlet degree vector instead of node embedding. The graphlet degree vector is generated/counted based on the Orbit Counting Algorithm (Orca).

Miscellaneous

Please send any questions you might have about the code and/or the algorithm to [email protected].

License

GNNGuard is licensed under the MIT License.

Owner
Zitnik Lab @ Harvard
Machine Learning for Medicine and Science
Zitnik Lab @ Harvard
Memory efficient transducer loss computation

Introduction This project implements the optimization techniques proposed in Improving RNN Transducer Modeling for End-to-End Speech Recognition to re

Fangjun Kuang 51 Nov 25, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022