An open-source project for applying deep learning to medical scenarios

Overview

Auto Vaidya

An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant detection, pneumonia detection, brain mri segmentation etc.

Suggestions for PR:

  • Please give your PR for the test branch unless requested otherwise by the project maintainer
  • Name your PR appropiately
  • Ensure that you had already raised an issue for this PR and the project maintainer had approved and assigned you
  • In the PR description, typically the following are expected:
    • Dataset Used:
    • Dataset Size:
    • Dataset Source:
    • Link to Colab Notebook: Please ensure you give access for view to anyone with link
    • Your Exploratory Data Analysis [Snapshots of the relevant ones and your inference from that]
    • Any Pre-Processing methods used. [Elaborate on them]
    • Your framework to train
    • Different methods used for training
    • Test/Train Split
    • Results: Please do not simply state test accuracy. Other perfomance metrics like F1 score,etc are expected
    • ** Draw a table to show the comparitive analysis of the performance of the different methods you used
    • Conclusion: Which method you think is best and why?
  • A copy of the notebook used for your training is expected inside the notebooks/ directory.
  • Please name the notebook as name_of_the_problem_your_github_username
  • The model files are expected to be inside a models\name_of_your_problem\ directory
  • If you are using TensorFlow 2.0, please give both the h5 as well as saved_model file
  • Once your PR, gets approved uptil this, proceed with a follow up pr to integrate it inside the streamlit app. Refer this if you are unaware of how to use streamlit and host it
  • For the streamlit app, it would be a good practice if you define the function for classification/prediction/regression inside a separate python file say your_problem_name.py and import it inside app.py ( Believe me this would save a lot of time otherwise wasted in debugging)
  • For the second PR, you are expected to do the above changes and provide screenshots/a small clip of the working model of the app after integrating your model from the previous PR
  • For the second PR, it should be one the test branch only, later the project maintainers will merge it with the master branch for a stable release
  • For PRs, related to frontend please give it to the frontend branch
  • Once accepted, give a follow up PR to the test branch to render your html,css files for a page using streamlit
  • As stated above you are expected to give screenshots, descriptions and other details for the PR

Entire App on Heroku: https://auto-vaidya.herokuapp.com/ Frontend on Netlify: autovaidya.netlify.app

Owner
Smaranjit Ghose
Life Long Learner
Smaranjit Ghose
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Pluto 68 Dec 20, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023