Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

Related tags

Deep LearningNRNS
Overview

No RL No Simulation (NRNS)

Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

[project website]

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n nrns python3.6
conda activate nrns

Install Habitat and Other Dependencies

NRNS makes extensive use of the Habitat Simulator and Habitat-Lab developed by FAIR. You will first need to install both Habitat-Sim and Habitat-Lab.

Please find the instructions to install habitat here

If you are using conda, Habitat-Sim can easily be installed with

conda install -c aihabitat -c conda-forge habitat-sim headless

We recommend downloading the test scenes and running the example script as described here to ensure the installation of Habitat-Sim and Habitat-Lab was successful. Now you can clone this repository and install the rest of the dependencies:

git clone [email protected]:meera1hahn/NRNS.git
cd NRNS
python -m pip install -r requirements.txt
python download_aux.py

Download Scene Data

Like Habitat-Lab, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project. Running the download_aux.py script will download the pretrained models but you will still need to download the scene data. We evaluate our agents on Matterport3D (MP3D) and Gibson scene reconstructions. Instructions on how to download RealEstate10k can be found here.

Image-Nav Test Episodes

The image-nav test epsiodes used in this paper for MP3D and Gibson can be found here. These were used to test all baselines and NRNS.

Matterport3D

The official Matterport3D download script (download_mp.py) can be accessed by following the "Dataset Download" instructions on their project webpage. The scene data can then be downloaded this way:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 total scenes. We follow the standard train/val/test splits.

Gibson

The official Gibson dataset can be accessed on their project webpage. Please follow the link to download the Habitat Simulator compatible data. The link will first take you to the license agreement and then to the data. We follow the standard train/val/test splits.

Running pre-trained models

Look at the run scripts in src/image_nav/run_scripts/ for examples of how to run the model.

Difficulty settings options are: easy, medium, hard

Path Type setting options are: straight, curved

To run NRNS on gibson without noise for example on the straight setting with a medium difficulty

cd src/image_nav/
python -W ignore run.py \
    --dataset 'gibson' \
    --path_type 'straight' \
    --difficulty 'medium' \

Citing

If you use NRNS in your research, please cite the following paper:

@inproceedings{hahn_nrns_2021,
  title={No RL, No Simulation: Learning to Navigate without Navigating},
  author={Meera Hahn and Devendra Chaplot and Mustafa Mukadam and James M. Rehg and Shubham Tulsiani and Abhinav Gupta},
  booktitle={Neurips},
  year={2021}
 }
Owner
Meera Hahn
Ph.D. Student in Computer Science School of Interactive Computing Georgia Institute of Technology
Meera Hahn
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022