Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

Related tags

Deep Learningast
Overview

AST: Audio Spectrogram Transformer

Introduction

Illustration of AST.

This repository contains the official implementation (in PyTorch) of the Audio Spectrogram Transformer (AST) proposed in the Interspeech 2021 paper AST: Audio Spectrogram Transformer (Yuan Gong, Yu-An Chung, James Glass).

AST is the first convolution-free, purely attention-based model for audio classification which supports variable length input and can be applied to various tasks. We evaluate AST on various audio classification benchmarks, where it achieves new state-of-the-art results of 0.485 mAP on AudioSet, 95.6% accuracy on ESC-50, and 98.1% accuracy on Speech Commands V2. For details, please refer to the paper and the ISCA SIGML talk.

Please have a try! AST can be used with a few lines of code, and we also provide recipes to reproduce the SOTA results on AudioSet, ESC-50, and Speechcommands with almost one click.

The AST model file is in src/models/ast_models.py, the recipes are in egs/[audioset,esc50,speechcommands]/run.sh, when you run run.sh, it will call /src/run.py, which will then call /src/dataloader.py and /src/traintest.py, which will then call /src/models/ast_models.py.

Citing

Please cite our paper(s) if you find this repository useful. The first paper proposes the Audio Spectrogram Transformer while the second paper describes the training pipeline that we applied on AST to achieve the new state-of-the-art on AudioSet.

@article{gong2021ast,  
 title={Ast: Audio spectrogram transformer}, 
 author={Gong, Yuan and Chung, Yu-An and Glass, James}, 
 journal={arXiv preprint arXiv:2104.01778}, 
 year={2021}}  
@article{gong2021psla,  
 title={PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation}, 
 author={Gong, Yuan and Chung, Yu-An and Glass, James}, 
 journal={arXiv preprint arXiv:2102.01243}, 
 year={2021}}  

Getting Started

Step 1. Clone or download this repository and set it as the working directory, create a virtual environment and install the dependencies.

cd ast/ 
python3 -m venv venvast
source venvast/bin/activate
pip install -r requirements.txt 

Step 2. Test the AST model.

ASTModel(label_dim=527, \
         fstride=10, tstride=10, \
         input_fdim=128, input_tdim=1024, \
         imagenet_pretrain=True, audioset_pretrain=False, \
         model_size='base384')

Parameters:
label_dim : The number of classes (default:527).
fstride: The stride of patch spliting on the frequency dimension, for 16*16 patchs, fstride=16 means no overlap, fstride=10 means overlap of 6 (used in the paper). (default:10)
tstride: The stride of patch spliting on the time dimension, for 16*16 patchs, tstride=16 means no overlap, tstride=10 means overlap of 6 (used in the paper). (default:10)
input_fdim: The number of frequency bins of the input spectrogram. (default:128)
input_tdim: The number of time frames of the input spectrogram. (default:1024, i.e., 10.24s)
imagenet_pretrain: If True, use ImageNet pretrained model. (default: True, we recommend to set it as True for all tasks.)
audioset_pretrain: IfTrue, use full AudioSet And ImageNet pretrained model. Currently only support base384 model with fstride=tstride=10. (default: False, we recommend to set it as True for all tasks except AudioSet.)
model_size: The model size of AST, should be in [tiny224, small224, base224, base384] (default: base384).

cd ast/src
python
import os 
import torch
from models import ASTModel 
# download pretrained model in this directory
os.environ['TORCH_HOME'] = '../pretrained_models'  
# assume each input spectrogram has 100 time frames
input_tdim = 100
# assume the task has 527 classes
label_dim = 527
# create a pseudo input: a batch of 10 spectrogram, each with 100 time frames and 128 frequency bins 
test_input = torch.rand([10, input_tdim, 128]) 
# create an AST model
ast_mdl = ASTModel(label_dim=label_dim, input_tdim=input_tdim, imagenet_pretrain=True)
test_output = ast_mdl(test_input) 
# output should be in shape [10, 527], i.e., 10 samples, each with prediction of 527 classes. 
print(test_output.shape)  

ESC-50 Recipe

The ESC-50 recipe is in ast/egs/esc50/run_esc.sh, the script will automatically download the ESC-50 dataset and resample it to 16kHz, then run standard 5-cross validation and report the result. The recipe was tested on 4 GTX TITAN GPUs with 12GB memory. The result is saved in ast/egs/esc50/exp/yourexpname/acc_fold.csv (the accuracy of fold 1-5 and the averaged accuracy), you can also check details in result.csv and best_result.csv (accuracy, AUC, loss, etc of each epoch / best epoch). We attached our log file in ast/egs/esc50/test-esc50-f10-t10-p-b48-lr1e-5, the model achieves 95.75% accuracy.

To run the recipe, simply comment out . /data/sls/scratch/share-201907/slstoolchainrc in ast/egs/esc50/run_esc.sh, adjust the path if needed, and run:

cd ast/egs/esc50
(slurm user) sbatch run_esc50.sh
(local user) ./run_esc50.sh

Speechcommands V2 Recipe

The Speechcommands recipe is in ast/egs/speechcommands/run_sc.sh, the script will automatically download the Speechcommands V2 dataset, train an AST model on the training set, validate it on the validation set, and evaluate it on the test set. The recipe was tested on 4 GTX TITAN GPUs with 12GB memory. The result is saved in ast/egs/speechcommands/exp/yourexpname/eval_result.csv in format [val_acc, val_AUC, eval_acc, eval_AUC], you can also check details in result.csv (accuracy, AUC, loss, etc of each epoch). We attached our log file in ast/egs/speechcommends/test-speechcommands-f10-t10-p-b128-lr2.5e-4-0.5-false, the model achieves 98.12% accuracy.

To run the recipe, simply comment out . /data/sls/scratch/share-201907/slstoolchainrc in ast/egs/esc50/run_sc.sh, adjust the path if needed, and run:

cd ast/egs/speechcommands
(slurm user) sbatch run_sc.sh
(local user) ./run_sc.sh

Audioset Recipe

Audioset is a little bit more complex, you will need to prepare your data json files (i.e., train_data.json and eval_data.json) by your self. The reason is that the raw wavefiles of Audioset is not released and you need to download them by yourself. We have put a sample json file in ast/egs/audioset/data/datafiles, please generate files in the same format (You can also refer to ast/egs/esc50/prep_esc50.py and ast/egs/speechcommands/prep_sc.py.). Please keep the label code consistent with ast/egs/audioset/data/class_labels_indices.csv.

Once you have the json files, you will need to generate the sampling weight file of your training data (please check our PSLA paper to see why it is needed).

cd ast/egs/audioset
python gen_weight_file.py ./data/datafiles/train_data.json

Then you just need to change the tr_data and te_data in /ast/egs/audioset/run.sh and then

cd ast/egs/audioset
(slurm user) sbatch run.sh
(local user) ./run.sh

You should get a model achieves 0.448 mAP (without weight averaging) and 0.459 (with weight averaging). This is the best single model reported in the paper. The result of each epoch is saved in ast/egs/audioset/exp/yourexpname/result.csv in format [mAP, mAUC, precision, recall, d_prime, train_loss, valid_loss, cum_mAP, cum_mAUC, lr] , where cum_ results are the checkpoint ensemble results (i.e., averaging the prediction of checkpoint models of each epoch, please check our PSLA paper for details). The result of weighted averaged model is saved in wa_result.csv in format [mAP, AUC, precision, recall, d-prime]. We attached our log file in ast/egs/audioset/test-full-f10-t10-pTrue-b12-lr1e-5/, the model achieves 0.459 mAP.

In order to reproduce ensembe results of 0.475 mAP and 0.485 mAP, please train 3 models use the same setting (i.e., repeat above three times) and train 6 models with different tstride and fstride, and average the output of the models. Please refer to ast/egs/audioset/ensemble.py. We attached our ensemble log in /ast/egs/audioset/exp/ensemble-s.log and ensemble-m.log. You can use our pretrained models (see below) to test ensemble result.

Pretrained Models

We provide full AudioSet pretrained models.

  1. Full AudioSet, 10 tstride, 10 fstride, with Weight Averaging (0.459 mAP)
  2. Full AudioSet, 10 tstride, 10 fstride, without Weight Averaging, Model 1 (0.450 mAP)
  3. Full AudioSet, 10 tstride, 10 fstride, without Weight Averaging, Model 2 (0.448 mAP)
  4. Full AudioSet, 10 tstride, 10 fstride, without Weight Averaging, Model 3 (0.448 mAP)
  5. Full AudioSet, 12 tstride, 12 fstride, without Weight Averaging, Model (0.447 mAP)
  6. Full AudioSet, 14 tstride, 14 fstride, without Weight Averaging, Model (0.443 mAP)
  7. Full AudioSet, 16 tstride, 16 fstride, without Weight Averaging, Model (0.442 mAP)

Ensemble model 2-4 achieves 0.475 mAP, Ensemble model 2-7 achieves and 0.485 mAP. You can download these models at one click using ast/egs/audioset/download_models.sh. Once you download the model, you can try ast/egs/audioset/ensemble.py, you need to change the eval_data_path and mdl_list to run it. We attached our ensemble log in /ast/egs/audioset/exp/ensemble-s.log and ensemble-m.log.

If you want to finetune AudioSet-pretrained AST model on your task, you can simply set the audioset_pretrain=True when you create the AST model, it will automatically download model 1 (0.459 mAP). In our ESC-50 recipe, AudioSet pretraining is used.

Contact

If you have a question, please bring up an issue (preferred) or send me an email [email protected].

Owner
Yuan Gong
Ph.D in CS
Yuan Gong
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Atif Hassan 103 Dec 14, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Xintao 1.4k Dec 25, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022