DeepLab resnet v2 model in pytorch

Overview

pytorch-deeplab-resnet

DeepLab resnet v2 model implementation in pytorch.

The architecture of deepLab-ResNet has been replicated exactly as it is from the caffe implementation. This architecture calculates losses on input images over multiple scales ( 1x, 0.75x, 0.5x ). Losses are calculated individually over these 3 scales. In addition to these 3 losses, one more loss is calculated after merging the output score maps on the 3 scales. These 4 losses are added to calculate the total loss.

Updates

18 July 2017

  • One more evaluation script is added, evalpyt2.py. The old evaluation script evalpyt.py uses a different methodoloy to take mean of IOUs than the one used by authors. Results section has been updated to incorporate this change.

24 June 2017

  • Now, weights over the 3 scales ( 1x, 0.75x, 0.5x ) are shared as in the caffe implementation. Previously, each of the 3 scales had seperate weights. Results are almost same after making this change (more in the results section). However, the size of the trained .pth model has reduced significantly. Memory occupied on GPU(11.9 GB) and time taken (~3.5 hours) during training are same as before. Links to corresponding .pth files have been updated.
  • Custom data can be used to train pytorch-deeplab-resnet using train.py, flag --NoLabels (total number of labels in training data) has been added to train.py and evalpyt.py for this purpose. Please note that labels should be denoted by contiguous values (starting from 0) in the ground truth images. For eg. if there are 7 (no_labels) different labels, then each ground truth image must have these labels as 0,1,2,3,...6 (no_labels-1).

The older version (prior to 24 June 2017) is available here.

Usage

Note that this repository has been tested with python 2.7 only.

Converting released caffemodel to pytorch model

To convert the caffemodel released by authors, download the deeplab-resnet caffemodel (train_iter_20000.caffemodel) pretrained on VOC into the data folder. After that, run

python convert_deeplab_resnet.py

to generate the corresponding pytorch model file (.pth). The generated .pth snapshot file can be used to get the exsct same test performace as offered by using the caffemodel in caffe (as shown by numbers in results section). If you do not want to generate the .pth file yourself, you can download it here.

To run convert_deeplab_resnet.py, deeplab v2 caffe and pytorch (python 2.7) are required.

If you want to train your model in pytorch, move to the next section.

Training

Step 1: Convert init.caffemodel to a .pth file: init.caffemodel contains MS COCO trained weights. We use these weights as initilization for all but the final layer of our model. For the last layer, we use random gaussian with a standard deviation of 0.01 as the initialization. To convert init.caffemodel to a .pth file, run (or download the converted .pth here)

python init_net_surgery.py

To run init_net_surgery .py, deeplab v2 caffe and pytorch (python 2.7) are required.

Step 2: Now that we have our initialization, we can train deeplab-resnet by running,

python train.py

To get a description of each command-line arguments, run

python train.py -h

To run train.py, pytorch (python 2.7) is required.

By default, snapshots are saved in every 1000 iterations in the data/snapshots. The following features have been implemented in this repository -

  • Training regime is the same as that of the caffe implementation - SGD with momentum is used, along with the poly lr decay policy. A weight decay has been used. The last layer has 10 times the learning rate of other layers.
  • The iter_size parameter of caffe has been implemented, effectively increasing the batch_size to batch_size times iter_size
  • Random flipping and random scaling of input has been used as data augmentation. The caffe implementation uses 4 fixed scales (0.5,0.75,1,1.25,1.5) while in the pytorch implementation, for each iteration scale is randomly picked in the range - [0.5,1.3].
  • The boundary label (255 in ground truth labels) has not been ignored in the loss function in the current version, instead it has been merged with the background. The ignore_label caffe parameter would be implemented in the future versions. Post processing using CRF has not been implemented.
  • Batchnorm parameters are kept fixed during training. Also, caffe setting use_global_stats = True is reproduced during training. Running mean and variance are not calculated during training.

When run on a Nvidia Titan X GPU, train.py occupies about 11.9 GB of memory.

Evaluation

Evaluation of the saved models can be done by running

python evalpyt.py

To get a description of each command-line arguments, run

python evalpyt.py -h

Results

When trained on VOC augmented training set (with 10582 images) using MS COCO pretrained initialization in pytorch, we get a validation performance of 72.40%(evalpyt2.py, on VOC). The corresponding .pth file can be downloaded here. This is in comparision to 75.54% that is acheived by using train_iter_20000.caffemodel released by authors, which can be replicated by running this file . The .pth model converted from .caffemodel using the first section also gives 75.54% mean IOU. A previous version of this file reported mean IOU of 78.48% on the pytorch trained model which is caclulated in a different way (evalpyt.py, Mean IOU is calculated for each image and these values are averaged together. This way of calculating mean IOU is different than the one used by authors).

To replicate this performance, run

train.py --lr 0.00025 --wtDecay 0.0005 --maxIter 20000 --GTpath <train gt images path here> --IMpath <train images path here> --LISTpath data/list/train_aug.txt

Dataset

The model presented in the results section was trained using the augmented VOC train set which was released by this paper. You may download this augmented data directly from here.

Note that this code can be used to train pytorch-deeplab-resnet model for other datasets also.

Acknowledgement

A part of the code has been borrowed from https://github.com/ry/tensorflow-resnet.

Owner
Isht Dwivedi
Isht Dwivedi
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Automatically align face images ๐Ÿ™ƒโ†’๐Ÿ™‚. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" ๐ŸŒŸ ๐ŸŒŸ . ๐ŸŽ“ Re

Shuai Shen 87 Dec 28, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stockย price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub ๐Ÿค—โšก๏ธ

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Look Whoโ€™s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022