✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

Overview

风纪委员会自动投票

本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧!

如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请

投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,时间是UTC时区的时间,需要将时位+8才是北京时间

使用本脚本即代表你放弃追究开发者任何由使用本脚本而造成的责任,所有的责任由使用者自行承担!

赞助

点击下面的Badge其中一个就可以跳转到相应页面,感谢老板的支持!

前往爱发电赞助 使用微信赞助 使用支付宝赞助

目录

从零开始的使用指北☞

使用方法

1、Fork本仓库,直接点击右上角的Fork图标,然后将项目选择到你的账户下即可

2、进入设置,添加变量必需变量csrfsessdata,另有giveupdelay可选变量可以添加

请注意:你无需在仓库的secrets内设置名为GITHUB_TOKEN的变量,该名称本身就是指定为自己账户下名为GITHUB_TOKEN的密钥,如果你在仓库的secrets内设置将会被Github提示无效

如何获取变量内容?请点这里

保活策略

因为Github Action在仓库60天内没有任何Push的时候会禁用你的Action,这时候我们就要进行保活

保活Action已经写好了,但是这里有一些步骤是需要你进行的,请看下面的图片生成GITHUB_TOKEN以便让脚本造成的更改能够正常推送入你的仓库

到这里勾选完以后点绿绿的Generate token就可以了

变量获取

csrf与sessdata

首先我们打开B站,直接在B站的网址后面加上/judgement,或者直接访问https://bilibili.com/judgement,按下键盘上的F12,打开开发者工具

接着我们点到上面的Network(有些写的是网络,例如Edge),在左边找到index项,然后点击它,在右侧找到cookie这一个键,然后复制SESSDATA=;的内容作为sessdatabili_jct=;的内容作为csrf

请注意:不要把分号弄进去了!不要分号!不要分号!(重要的事情说三遍)

giveup与delay

这是两个我设定的值,因为B站对于案件有放弃这一说,所以我对它特别加了个开关

如果你不想让脚本对案件采用放弃的操作,那么就要添加Giveup这个值,而且必须填上False,否则一律当允许放弃处理;还有一个delay是不放弃的话等待多长时间以后再次进行操作计算,以秒为单位,必须是整数,不填就默认为300

JudgeProportion

这是一个设定赞成比例的值,默认设定的是0.7,即赞成票占全部的70%就选择赞成中票数较高的操作,或合规票占全部的70%(即违规占30%)时就投合规,否则进入放弃/等待阶段,这个数字必须是大于0且小于1的小数!若输入无效数字按默认值处理!

脚本测试

我们先进入Action界面,启用Action(因为我这里忘记截图了,所以用我隔壁的那个网易云游戏签到脚本来顶一下)

然后我们进入对应的脚本,启用脚本,并进行测试

只要打了绿色的勾勾就是成功了,然后你就不用管它了,它会自己运行的

脚本更新

自动更新(推荐)

点击这里安装插件,可以选择所有仓库,也可以指选择你Fork的仓库(当然至少要选择fork的仓库对吧,要不然怎么更新),然后不管它就好了

详细步骤可以看下面的图片

手动更新

具体看图,请注意:以下操作均在自己的仓库进行!

这样你就完成了手动更新操作!

免责声明

学习项目,请勿滥用!如果有因滥用造成的封号、删除账户等情况或违反相关法律所造成的责任,本人拒不承担!

Owner
Pesy Wu
C++菜鸟,一般用Python,高中生,2021高考生,上线时间少很多,不一定能及时回复请见谅(>人<;) 小号:@ElainaMoe
Pesy Wu
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
A Python library for Deep Probabilistic Modeling

Abstract DeeProb-kit is a Python library that implements deep probabilistic models such as various kinds of Sum-Product Networks, Normalizing Flows an

DeeProb-org 46 Dec 26, 2022