CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

Related tags

Deep LearningCAMoE
Overview

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

This is official implement of "Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss".

Open source project

We intented to publish the dual softmax loss firstly, the entire version will be available before the end of this year.

Abstract

Employing large-scale pre-trained model CLIP to conduct video-text retrieval task (VTR) has become a new trend, which exceeds previous VTR methods. Though, due to the heterogeneity of structures and contents between video and text, previous CLIP-based models are prone to overfitting in the training phase, resulting in relatively poor retrieval performance. In this paper, we propose a multi-stream Corpus Alignment network with single gate Mixture-of-Experts (CAMoE) and a novel Dual Softmax Loss (DSL) to solve the two heterogeneity. The CAMoE employs Mixture-of-Experts (MoE) to extract multi-perspective video representations, including action, entity, scene, etc., then align them with the corresponding part of the text. In this stage, we conduct massive explorations towards the feature extraction module and feature alignment module. DSL is proposed to avoid the one-way optimum-match which occurs in previous contrastive methods. Introducing the intrinsic prior of each pair in a batch, DSL serves as a reviser to correct the similarity matrix and achieves the dual optimal match. DSL is easy to implement with only one-line code but improves significantly. The results show that the proposed CAMoE and DSL are of strong efficiency, and each of them is capable of achieving State-of-The-Art (SOTA) individually on various benchmarks such as MSR-VTT, MSVD, LSMDC, DiDeMo, and Activitynet. Further, with both of them, the performance is advanced to a big extend, surpassing the previous SOTA methods for the average of around 4~5% [email protected] in various VTR datasets.

The Experimental Result

dataset [email protected] [email protected]
MSR-VTT-1k 48.8 50.3
MSR-VTT 32.9 59.8
MSVD 51.8 69.3
DiDeMo 43.8 45.5
Activitynet 51.0 49.9

Note that all the results achieve the SOTA.

Citing artical

Pleadse cite this article as:

@misc{cheng2021improving,
      title={Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss}, 
      author={Xing Cheng and Hezheng Lin and Xiangyu Wu and Fan Yang and Dong Shen},
      year={2021},
      eprint={2109.04290},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
程星
ICT master major in CV.
程星
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
A very impractical 3D rendering engine that runs in the python terminal.

Terminal-3D-Render A very impractical 3D rendering engine that runs in the python terminal. do NOT try to run this program using the standard python I

23 Dec 31, 2022
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022