SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

Overview

SiamMOT

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

SiamMOT: Siamese Multi-Object Tracking,
Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo, Joseph Tighe,

@inproceedings{shuai2021siammot,
  title={SiamMOT: Siamese Multi-Object Tracking},
  author={Shuai, Bing and Berneshawi, Andrew and Li, Xinyu and Modolo, Davide and Tighe, Joseph},
  booktitle={CVPR},
  year={2021}
}

Abstract

In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instance’s movement between two frames such that detected instances are associated. To explore how the motion modelling affects its tracking capability, we present two variants of Siamese tracker, one that implicitly models motion and one that models it explicitly. We carry out extensive quantitative experiments on three different MOT datasets: MOT17, TAO-person and Caltech Roadside Pedestrians, showing the importance of motion modelling for MOT and the ability of SiamMOT to substantially outperform the state-of-the-art. Finally, SiamMOT also outperforms the winners of ACM MM’20 HiEve Grand Challenge on HiEve dataset. Moreover, SiamMOT is efficient, and it runs at 17 FPS for 720P videos on a single modern GPU.

Installation

Please refer to INSTALL.md for installation instructions.

Try SiamMOT demo

For demo purposes, we provide two tracking models -- tracking person (visible part) or jointly tracking person and vehicles (bus, car, truck, motorcycle, etc). The person tracking model is trained on COCO-17 and CrowdHuman, while the latter model is trained on COCO-17 and VOC12. Currently, both models used in demos use EMM as its motion model, which performs best among different alternatives.

In order to run the demo, use the following command:

python3 demos/demo.py --demo-video  PATH_TO_DEMO_VIDE --track-class person --dump-video True

You can choose person or person_vehicel for track-class such that person tracking or person/vehicle tracking model is used accordingly.

The model would be automatically downloaded to demos/models, and the visualization of tracking outputs is automatically saved to demos/demo_vis

We also provide several pre-trained models in model_zoos.md that can be used for demo.

Dataset Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. As a sanity check, the models presented in model_zoos.md can be used to for benchmark testing.

Use the following command to train a model on an 8-GPU machine: Before running training / inference, setup the configuration file properly

python3 -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/dla/DLA_34_FPN.yaml --train-dir PATH_TO_TRAIN_DIR --model-suffix MODEL_SUFFIX 

Use the following command to test a model on a single-GPU machine:

python3 tools/test_net.py --config-file configs/dla/DLA_34_FPN.yaml --output-dir PATH_TO_OUTPUT_DIR --model-file PATH_TO_MODEL_FILE --test-dataset DATASET_KEY --set val

Note: If you get an error ModuleNotFoundError: No module named 'siammot' when running in the git root then make sure your PYTHONPATH includes the current directory, which you can add by running: export PYTHONPATH=.:$PYTHONPATH or you can explicitly add the project to the path by replacing the '.' in the export command with the absolute path to the git root.

Multi-gpu testing is going to be supported later.

Version

This is the preliminary version specifically for Airbone Object Tracking (AOT) workshop. The current version only support the motion model being EMM.

We will add more motion models in the next version, together with more features, stay tuned.

License

This project is licensed under the Apache-2.0 License.

An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023