Code for "The Box Size Confidence Bias Harms Your Object Detector"

Overview

The Box Size Confidence Bias Harms Your Object Detector - Code

Disclaimer: This repository is for research purposes only. It is designed to maintain reproducibility of the experiments described in "The Box Size Confidence Bias Harms Your Object Detector".

Setup

Download Annotations

Download COCO2017 annotations for train, val, and tes-dev from here and move them into the folder structure like this (alternatively change the config in config/all/paths/annotations/coco_2017.yaml to your local folder structure):

 .
 └── data
   └── coco
      └── annotations
        ├── instances_train2017.json
        ├── instances_val2017.json
        └── image_info_test-dev2017.json

Generate Detections

Generate detections on the train, val, and test-dev COCO2017 set, save them in the COCO file format as JSON files. Move detections to data/detections/MODEL_NAME, see config/all/detections/default_all.yaml for all the used detectors and to add other detectors.
The official implementations for the used detectors are:

Examples

CenterNet (Hourglass)

To generate the Detections for CenterNet with Hourglass backbone first follow the installation instructions. Then download ctdet_coco_hg.pth to /models from the official source Then generate the detections from the /src folder:

test_train.py python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth ">
# On val
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_val --dataset coco --load_model ../models/ctdet_coco_hg.pth 
# On test-dev
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_test-dev --dataset coco --load_model ../models/ctdet_coco_hg.pth --trainval
# On train
sed '56s/.*/  split = "train"/' test.py > test_train.py
python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth

The scaling for TTA is set via the "--test_scales LIST_SCALES" flag. So to generate only the 0.5x-scales: --test_scales 0.5

RetinaNet with MMDetection

To generate the de detection files using mmdet, first follow the installation instructions. Then download specific model weights, in this example retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth to PATH_TO_DOWNLOADED_WEIGHTS and execute the following commands:

python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/train2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/train2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_train2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/val2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/val2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_val2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/test-dev2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/test2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/image_info_test-dev2017.json'

Install Dependencies

pip3 install -r requirements.txt
Optional Dependencies
# Faster coco evaluation (used if available)
pip3 install fast_coco_eval
# Parallel multi-runs, if enough RAM is available (add "hydra/launcher=joblib" to every command with -m flag)
pip install hydra-joblib-launcher

Experiments

Most of the experiments are performed using the CenterNet(HG) detections to change the detector add detections=OTHER_DETECTOR, with the location of OTHER_DETECTORs detections specified in config/all/detections/default_all.yaml. The results of each experiment are saved to outputs/EXPERIMENT/DATE and multirun/EXPERIMENT/DATE in the case of a multirun (-m flag).

Figure 2: Calibration curve of histogram binning and modified version

# original histogram binning calibration curve
python3 create_plots.py -cn plot_org_hist_bin
# modified histogram binning calibration curve:
python3 create_plots.py -cn plot_mod_hist_bin

Table 1: Ablation of histogram binning modifications

python3 calibrate.py -cn ablate_modified_hist 

Table 2: Ablation of optimization metrics of calibration on validation split

python3 calibrate.py -cn ablate_metrics  "seed=range(4,14)" -m

Figure 3: Bounding box size bias on train and val data detections

Plot of calibration curve:

# on validation data
python3 create_plots.py -cn plot_miscal name="plot_miscal_val" split="val"
# on train data:
python3 create_plots.py -cn plot_miscal name="plot_miscal_train" split="train" calib.conf_bins=20

Table 3: Ablation of optimization metrics of calibration on training data

python3 calibrate.py -cn explore_train

Table 4: Effect of individual calibration on TTA

  1. Generate detections (on train and val split) for each scale-factor individually (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150) and for complete TTA (CenterNet_HG_TTA_ens)

  2. Generate individually calibrated detections..

    python3 calibrate.py -cn calibrate_train name="calibrate_train_tta" detector="CenterNet_HG_TTA_050","CenterNet_HG_TTA_075","CenterNet_HG_TTA_100","CenterNet_HG_TTA_125","CenterNet_HG_TTA_150","CenterNet_HG_TTA_ens" -m
  3. Copy calibrated detections from multirun/calibrate_train_tta/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/val/MODEL_NAME.json to data/calibrated/MODEL_NAME/val/results.json for MODEL_NAME in (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150).

  4. Generate TTA of calibrated detections

    python3 enseble.py -cn enseble

Figure 4: Ablation of IoU threshold

python3 calibrate.py -cn calibrate_train name="ablate_iou" "iou_threshold=range(0.5,0.96,0.05)" -m

Table 5: Calibration method on different model

python3 calibrate.py -cn calibrate_train name="calibrate_all_models" detector=LIST_ALL_MODELS -m

The test-dev predictions are found in multirun/calibrate_all_models/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/test/MODEL_NAME.json and can be evaluated using the official evaluation sever.

Supplementary Material

A.Figure 5 & 6: Performance Change for Extended Optimization Metrics

python3 calibrate.py -cn ablate_metrics_extended  "seed=range(4,14)" -m

A.Table 6: Influence of parameter search spaces on performance gain

# Results for B0, C0
python3 calibrate.py -cn calibrate_train
# Results for B0, C1
python3 calibrate.py -cn calibrate_train_larger_cbins
# Results for B0 union B1, C0
python3 calibrate.py -cn calibrate_train_larger_bbins
# Results for B0 union B1, C0 union C1
python3 calibrate.py -cn calibrate_train_larger_cbbins

A.Table 7: Influence of calibration method on different sized versions of EfficientDet

python3 calibrate.py -cn calibrate_train name="influence_modelsize" detector="Efficientdet_D0","Efficientdet_D1","Efficientdet_D2","Efficientdet_D3","Efficientdet_D4","Efficientdet_D5","Efficientdet_D6","Efficientdet_D7" -m
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Owner
Johannes G.
Johannes G.
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Deep and online learning with spiking neural networks in Python

Introduction The brain is the perfect place to look for inspiration to develop more efficient neural networks. One of the main differences with modern

Jason Eshraghian 447 Jan 03, 2023
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023