Code for "The Box Size Confidence Bias Harms Your Object Detector"

Overview

The Box Size Confidence Bias Harms Your Object Detector - Code

Disclaimer: This repository is for research purposes only. It is designed to maintain reproducibility of the experiments described in "The Box Size Confidence Bias Harms Your Object Detector".

Setup

Download Annotations

Download COCO2017 annotations for train, val, and tes-dev from here and move them into the folder structure like this (alternatively change the config in config/all/paths/annotations/coco_2017.yaml to your local folder structure):

 .
 └── data
   └── coco
      └── annotations
        ├── instances_train2017.json
        ├── instances_val2017.json
        └── image_info_test-dev2017.json

Generate Detections

Generate detections on the train, val, and test-dev COCO2017 set, save them in the COCO file format as JSON files. Move detections to data/detections/MODEL_NAME, see config/all/detections/default_all.yaml for all the used detectors and to add other detectors.
The official implementations for the used detectors are:

Examples

CenterNet (Hourglass)

To generate the Detections for CenterNet with Hourglass backbone first follow the installation instructions. Then download ctdet_coco_hg.pth to /models from the official source Then generate the detections from the /src folder:

test_train.py python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth ">
# On val
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_val --dataset coco --load_model ../models/ctdet_coco_hg.pth 
# On test-dev
python3 test.py ctdet --arch hourglass --exp_id Centernet_HG_test-dev --dataset coco --load_model ../models/ctdet_coco_hg.pth --trainval
# On train
sed '56s/.*/  split = "train"/' test.py > test_train.py
python3 test_train.py ctdet --arch hourglass --exp_id Centernet_HG_train --dataset coco --load_model ../models/ctdet_coco_hg.pth

The scaling for TTA is set via the "--test_scales LIST_SCALES" flag. So to generate only the 0.5x-scales: --test_scales 0.5

RetinaNet with MMDetection

To generate the de detection files using mmdet, first follow the installation instructions. Then download specific model weights, in this example retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth to PATH_TO_DOWNLOADED_WEIGHTS and execute the following commands:

python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/train2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/train2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_train2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/val2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/val2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/instances_val2017.json'
python3 tools/test.py configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py PATH_TO_DOWNLOADED_WEIGHTS/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth  --eval bbox --eval-options jsonfile_prefix='PATH_TO_THIS_REPO/detections/retinanet_x101_64x4d_fpn_2x/test-dev2017' --cfg-options data.test.img_prefix='PATH_TO_COCO_IMGS/test2017' data.test.ann_file='PATH_TO_COCO_ANNS/annotations/image_info_test-dev2017.json'

Install Dependencies

pip3 install -r requirements.txt
Optional Dependencies
# Faster coco evaluation (used if available)
pip3 install fast_coco_eval
# Parallel multi-runs, if enough RAM is available (add "hydra/launcher=joblib" to every command with -m flag)
pip install hydra-joblib-launcher

Experiments

Most of the experiments are performed using the CenterNet(HG) detections to change the detector add detections=OTHER_DETECTOR, with the location of OTHER_DETECTORs detections specified in config/all/detections/default_all.yaml. The results of each experiment are saved to outputs/EXPERIMENT/DATE and multirun/EXPERIMENT/DATE in the case of a multirun (-m flag).

Figure 2: Calibration curve of histogram binning and modified version

# original histogram binning calibration curve
python3 create_plots.py -cn plot_org_hist_bin
# modified histogram binning calibration curve:
python3 create_plots.py -cn plot_mod_hist_bin

Table 1: Ablation of histogram binning modifications

python3 calibrate.py -cn ablate_modified_hist 

Table 2: Ablation of optimization metrics of calibration on validation split

python3 calibrate.py -cn ablate_metrics  "seed=range(4,14)" -m

Figure 3: Bounding box size bias on train and val data detections

Plot of calibration curve:

# on validation data
python3 create_plots.py -cn plot_miscal name="plot_miscal_val" split="val"
# on train data:
python3 create_plots.py -cn plot_miscal name="plot_miscal_train" split="train" calib.conf_bins=20

Table 3: Ablation of optimization metrics of calibration on training data

python3 calibrate.py -cn explore_train

Table 4: Effect of individual calibration on TTA

  1. Generate detections (on train and val split) for each scale-factor individually (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150) and for complete TTA (CenterNet_HG_TTA_ens)

  2. Generate individually calibrated detections..

    python3 calibrate.py -cn calibrate_train name="calibrate_train_tta" detector="CenterNet_HG_TTA_050","CenterNet_HG_TTA_075","CenterNet_HG_TTA_100","CenterNet_HG_TTA_125","CenterNet_HG_TTA_150","CenterNet_HG_TTA_ens" -m
  3. Copy calibrated detections from multirun/calibrate_train_tta/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/val/MODEL_NAME.json to data/calibrated/MODEL_NAME/val/results.json for MODEL_NAME in (CenterNet_HG_TTA_050, CenterNet_HG_TTA_075, CenterNet_HG_TTA_100, CenterNet_HG_TTA_125, CenterNet_HG_TTA_150).

  4. Generate TTA of calibrated detections

    python3 enseble.py -cn enseble

Figure 4: Ablation of IoU threshold

python3 calibrate.py -cn calibrate_train name="ablate_iou" "iou_threshold=range(0.5,0.96,0.05)" -m

Table 5: Calibration method on different model

python3 calibrate.py -cn calibrate_train name="calibrate_all_models" detector=LIST_ALL_MODELS -m

The test-dev predictions are found in multirun/calibrate_all_models/DATE/MODEL_NAME/quantile_spline_ontrain_opt_tradeoff_full/test/MODEL_NAME.json and can be evaluated using the official evaluation sever.

Supplementary Material

A.Figure 5 & 6: Performance Change for Extended Optimization Metrics

python3 calibrate.py -cn ablate_metrics_extended  "seed=range(4,14)" -m

A.Table 6: Influence of parameter search spaces on performance gain

# Results for B0, C0
python3 calibrate.py -cn calibrate_train
# Results for B0, C1
python3 calibrate.py -cn calibrate_train_larger_cbins
# Results for B0 union B1, C0
python3 calibrate.py -cn calibrate_train_larger_bbins
# Results for B0 union B1, C0 union C1
python3 calibrate.py -cn calibrate_train_larger_cbbins

A.Table 7: Influence of calibration method on different sized versions of EfficientDet

python3 calibrate.py -cn calibrate_train name="influence_modelsize" detector="Efficientdet_D0","Efficientdet_D1","Efficientdet_D2","Efficientdet_D3","Efficientdet_D4","Efficientdet_D5","Efficientdet_D6","Efficientdet_D7" -m
You might also like...
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

a delightful machine learning tool that allows you to train, test and use models without writing code
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Owner
Johannes G.
Johannes G.
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023