Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

Related tags

Deep LearningASWS
Overview

This codebase is being actively maintained, please create and issue if you have issues using it

Basics

All data files are included under losses and each folder. The main Augmented Shapiro-Wilk Stopping criterion is implemented in analysis.py, along with several helper functions and wrappers. The other comparison heuristics are also included in analysis.py, along with their wrappers. grapher.py contains all the code for generating the graphs used in the paper, and earlystopping_calculator.py includes code for generating tables and calculating some statistics from the data. hyperparameter_search.py contains all the code used to execute the grid-search on the ASWS method, along with the grid-search for the other heuristics.

Installing

If you would like to try our code, just run pip3 install git+https://github.com/justinkterry/ASWS

Example

If you wanted to try to determine the ASWS stopping point of a model, you can do so using the analysis.py file. If at anypoint during model training you wanted to perform the stop criterion test, you can do

from ASWS.analysis import aswt_stopping

test_acc = [] # for storing model accuracies
for i in training_epochs:

    model.train()
    test_accuracy = model.evaluate(test_set)
    test_acc.append(test_accuracy)
    gamma = 0.5 # fill hyperparameters as desired
    num_data = 20
    slack_prop=0.1
    count = 20

    if len(test_acc) > count:
        aswt_stop_criterion = aswt_stopping(test_acc, gamma, count, num_data, slack_prop=slack_prop)

        if aswt_stop_criterion:
            print("Stop Training")

and if you already have finished training the model and wanted to determine the ASWS stopping point, you would need a CSV with columns Epoch, Training Loss, Training Acc, Test Loss, Test Acc. You could then use the following example

from ASWS.analysis import get_aswt_stopping_point_of_model, read_file

_, _, _, test_acc = read_file("modelaccuracy.csv")
gamma = 0.5 # fill hyperparameters as desired
num_data = 20
slack_prop=0.1
count = 20

stop_epoch, stop_accuracy = get_aswt_stopping_point_of_model(test_acc, gamma=gamma, num_data=num_data, count=count, slack_prop=slack_prop)

pytorch-training

The pytorch-training folder contains the driver file for training each model, along with the model files which contain each network definition. The main.py file can be run out of the box for the models listed in the paper. The model to train is specified via the --model argument. All learning rate schedulers listed in the paper are available (via --schedule step etc.) and the ASWS learning rate scheduler is available via --schedule ASWT . The corresponding ASWS hyperparameters are passed in at the command line (for example --gamma 0.5).

Example

In order to recreate the GoogLeNet ASWT 1 scheduler from the paper, you can use the following command

python3 main.py --model GoogLeNet --schedule ASWT --gamma 0.76 --num_data 19 --slack_prop 0.05 --lr 0.1

Owner
J K Terry
CS PhD student at UMD, founder of Swarm Labs, maintainer of Gym and PettingZoo. I work in deep reinforcement learning.
J K Terry
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022