Training data extraction on GPT-2

Overview

Training data extraction from GPT-2

This repository contains code for extracting training data from GPT-2, following the approach outlined in the following paper:

Extracting Training Data from Large Language Models
Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel
USENIX Security Symposium, 2021
https://arxiv.org/abs/2012.07805

WARNING: The experiments in our paper relied on different non-public codebases, and also involved a large amount of manual labor. The code in this repository is thus not meant to exactly reproduce the paper's results, but instead to illustrate the paper's approach and to help others perform similar experiments.
The code in this repository has not been tested at the scale considered in the paper (600,000 generated samples) and might find memorized content at a lower (or higher) rate!

Installation

You will need transformers, pytorch and tqdm. The code was tested with transformers v3.0.2 and torch v1.5.1.

Extracting Data

Simply run

python3 extraction.py --N 1000 --batch-size 10

to generate 1000 samples with GPT-2 (XL). The samples are generated with top-k sampling (k=40) and an empty prompt.

The generated samples are ranked according to four membership inference metrics introduced in our paper:

  • The log perplexity of the GPT-2 (XL) model.
  • The ratio of the log perplexities of the GPT-2 (XL) model and the GPT-2 (S) model.
  • The ratio of the log perplexities for the generated sample and the same sample in lower-case letters.
  • The ratio of the log perplexity of GPT-2 (XL) and the sample's entropy estimated by Zlib.

The top 10 samples according to each metric are printed out. These samples are likely to contain verbatim text from the GPT-2 training data.

Conditioning on Internet text

In our paper, we found that prompting GPT-2 with small snippets of text taken from the Web increased the chance of the model generating memorized content.

To reproduce this attack, first download a slice of the Common Crawl dataset:

./download_cc.sh

This will download a sample of the Crawl from May 2021 (~350 MB) to a file called commoncrawl.warc.wet.

Then, we can run the extraction attack with Internet prompts:

python3 extraction.py --N 1000 --internet-sampling --wet-file commoncrawl.warc.wet

Sample outputs

Some interesting data that we extracted from GPT-2 can be found here.

Note that these were found among 600,000 generated samples. If you generate a much smaller number of samples (10,000 for example), you will be less likely to find memorized content.

Citation

If this code is useful in your research, you are encouraged to cite our academic paper:

@inproceedings{carlini21extracting,
  author = {Carlini, Nicholas and Tramer, Florian and Wallace, Eric and Jagielski, Matthew and Herbert-Voss, Ariel and Lee, Katherine and Roberts, Adam and Brown, Tom and Song, Dawn and Erlingsson, Ulfar and Oprea, Alina and Raffel, Colin},
  title = {Extracting Training Data from Large Language Models},
  booktitle = {USENIX Security Symposium},
  year = {2021},
  howpublished = {arXiv preprint arXiv:2012.07805},
  url = {https://arxiv.org/abs/2012.07805}
}
Owner
Florian Tramer
Florian Tramer
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022