Code to produce syntactic representations that can be used to study syntax processing in the human brain

Overview

Can fMRI reveal the representation of syntactic structure in the brain?

The code base for our paper on understanding syntactic representations in the human brain using naturalistic fMRI data. We explain how to reproduce our results in detail and also point to our preprocessed data. Please cite this work if you use our code:

@inproceedings{reddywehbe2021,
  title={Can fMRI reveal the representation of syntactic structure in the brain?},
  author={Reddy, Aniketh Janardhan and Wehbe, Leila},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Dependencies

This work used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). All of the results were obtained using a machine with 14 CPU cores, 128 GB RAM and a CUDA-capable GPU. Our analyses were performed using iPython notebooks with Python3.6 kernels. We have tested this code on CentOS Linux 8. We recommend using a Linux-based environment to run our code. The analysis pipeline is fairly compute-intensive and it took us about 4 days to run it. Expect the runtime to be significantly longer if you are using a system with less than 8 cores. Our code does not make very heavy use of a GPU. Thus, an entry level graphics card such as an Nvidia RTX 2060 should be sufficient. It is possible to run the code even without a GPU but it might take longer to generate some features.

The Python packages needed to run our code can be installed by running the install_python_dependencies.sh script:

bash install_python_dependencies.sh

You will also have to install FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) which is needed to transform results to MNI space.

The graph embeddings-based features used in our paper are computed using sub2vec [1]. Please download the code written by the original authors for this algorithm from here http://people.cs.vt.edu/~bijaya/codes/sub2vec.zip and extract the code to a folder called sub2vec.

Clone the code for the incremental top-down parser [2, 3] from this repo - https://github.com/roarkbr/incremental-top-down-parser to the folder containing our code. This is needed to generate the syntactic surprisal and InConTreGE features. This code must be in a folder called incremental-top-down-parser.

Finally, download the ROIs created by Fedorenko et al. (2010) [4] from here - https://osf.io/2gaw3/ and extract the files to the folder containing our code. These are required to create the image of the ROIs.

Reproducing Our Results

The preprocessed fMRI data we use have been uploaded here - https://drive.google.com/file/d/1aYEZZSyrlo0UqswDBUiGzE3kGl3RcCn8/view?usp=sharing. Please download the file and extract it to the directory in which the code has been cloned. The data should be saved in a folder called sub_space_data.

Note that we cannot provide the anatomical data needed to visualize subject space results to protect the anonymity of the subjects. However, we provide the binary masks and transforms needed to transform subject space results to MNI space. These were obtained using pycortex.

Also, we provide all of the main files needed to generate our figures and tables since running our full pipeline can take a long time. These include the features we generate (in the features folder), the R^2 scores and the significance testing results (in the predictions and predictions_mni folders) among others.

Please follow these steps to reproduce our results using this codebase:

  1. Upon extracting the aforementioned file, the preprocessed fMRI data can be found in the folder called sub_space_data.

  2. The text which is presented to the subjects is in the chapter9.txt file. The string on each line of the file is sequentially presented (there are 5176 lines). The + symbol is a fixation cross that is periodically shown to the subjects. Since we use word-level features, all of the files which contain these features are numpy arrays of the form (5176, number of feature dimensions). The rows which correspond to the presentation of a + are filled with zeros.

  3. Generate the complexity metrics - Node Count (NC), Syntactic Surprisal (SS), Word Frequency (WF) and Word Length (WL), for every presented word by running the generate_node_count.ipynb, generate_syntactic_surprisal.ipynb, generate_word_frequencies_and_word_lengths.ipynb notebooks respectively. The outputs are stored in the features folder as node_count.npy, syntactic_surprisal.npy, word_frequency.npy and word_length.npy.

  4. Generate the POS tags of the presented words using the generate_pos_tags.ipynb notebook. The output is stored in the features folder as pos_tags.npy.

  5. Generate the DEP tags of the presented words using the generate_dep_tags.ipynb notebook. The output is stored in the features folder as dep_tags.npy.

  6. Generate the punctuation-based feature space by running the generate_punct.ipynb notebook. This feature space is extracted from POS and DEP tags since it is just a subset of these features. The output is stored in the features folder as punct_final.npy.

  7. In order to generate the ConTreGE Comp vectors, we first need to generate the subtrees to be encoded. This is done by running the generate_contrege_comp_subtrees.ipynb notebook. These subtrees are stored in the contrege_comp_subtrees folder. Then, we run the generate_contrege_comp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Comp vectors using sub2vec. These are stored in the features folder (called as contrege_comp_set_0.npy, contrege_comp_set_1.npy, contrege_comp_set_2.npy, contrege_comp_set_3.npy, contrege_comp_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  8. We need to follow steps similar to those used to generate ConTreGE Comp so as to generate the ConTreGE Incomp vectors. We first need to generate the subtrees to be encoded by running the generate_contrege_incomp_subtrees.ipynb notebook. These subtrees are stored in the contrege_incomp_subtrees folder. Then, we run the generate_contrege_incomp_vectors_using_sub2vec.ipynb notebook to generate 5 sets of ConTreGE Incomp vectors using sub2vec. These are stored in the features folder (called as contrege_incomp_set_0.npy, contrege_incomp_set_1.npy, contrege_incomp_set_2.npy, contrege_incomp_set_3.npy, contrege_incomp_set_4.npy). Again, we include all of the sets we generated and used in our analyses since these vectors are also stochastic and can vary from run to run.

  9. The InConTreGE vectors are generated using the partial parses output by the aforementioned incremental top-down parser. To get the subtrees which are representative of these partial parses, run the generate_incontrege_subtrees.ipynb notebook. Then, run the generate_incontrege_vectors_using_sub2vec.ipynb notebook to generate 5 sets of InConTreGE vectors using sub2vec. These are stored in the features folder (called as incontrege_set_0.npy, incontrege_set_1.npy, incontrege_set_2.npy, incontrege_set_3.npy, incontrege_set_4.npy). We include all of the sets we generated and used in our analyses since these vectors are stochastic and can vary from run to run.

  10. To generate the BERT embeddings-based semantic features, run the generate_incremental_bert_embeddings.ipynb notebook. The output is stored in the features folder as incremental_bert_embeddings_layer12_PCA_dims_15.npy.

  11. Now that all of the individual features are ready, we can build the hierarchical feature groups used in the paper. Run the generate_hierarchical_feature_groups.ipynb notebook to build them. Note that the punctuation-based feature is not explicitly added to feature groups that contain POS and DEP tags. This is because POS and DEP tags already contain the punctuation feature in them. This step generates the following important files in the features folder:

    1. node_count_punct.npy = {NC, PU}
    2. syntactic_surprisal_punct.npy = {SS, PU}
    3. word_frequency_punct.npy = {WF, PU}
    4. word_length_punct.npy = {WL, PU}
    5. all_complexity_metrics_punct.npy = {CM, PU}
    6. pos_dep_tags_all_complexity_metrics.npy = {PD, CM, PU}
    7. contrege_comp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CC, PD, CM, PU}
    8. contrege_incomp_set_X_pos_dep_tags_all_complexity_metrics.npy = {CI, PD, CM, PU}
    9. incontrege_set_X_pos_dep_tags_all_complexity_metrics.npy = {INC, PD, CM, PU}
    10. bert_PCA_dims_15_contrege_incomp_set_X_pos_dep_tags_node_count.npy = {BERT, CI, PD, CM, PU}
  12. We can then start training Ridge regression models and using these trained models to make predictions (training and prediction is done in a cross validated fashion as described in the paper). Run the predictions_master_script.ipynb notebook in order to generate all of the predictions. Predictions made using each feature group will be stored in separate subfolders in the predictions folder and will be in subject space (these subfolders will be named after the numpy files used to make the predictions). The R^2 scores for each subject and feature group are stored in the files of the form SubjectName_r2s.npy.

  13. The prediction results obtained using the ConTreGE Comp, ConTreGE Incomp and InConTreGE vectors need to be averaged across the 5 sets. Run the aggregate_contrege_results_across_sets.ipynb notebook to do this. The script outputs the averaged results to subfolders that start with the aggregated prefix in the predictions folder.

  14. After obtaining the predictions, we can start testing our results for significance. First, we test the significance of the R^2 scores obtained using punctuations only by performing a permutation test. This test is run by executing the significance_testing_permutation.ipynb notebook. Running this notebook will generate files of the form SubjectName_sig.npy in the punct_final subfolder of predictions. These subject space files indicate voxels for which the R^2 scores produced using punctuations are significant.

  15. Then, we test for the significance of the differences in R^2 scores between consecutive hierarchical feature groups by running the difference_significance_testing_bootstrap.ipynb notebook. This generates subfolders of the form {features in group 1}_diff_{features in group 2} that contain files of the form SubjectName_sig_boot.npy in the predictions folder. These subject space files indicate voxels for which the difference in R^2 scores between group 1 and group 2 (= R^2_group1 - R^2_group2) are significant. Note that:

    1. node_count_punct_diff_punct_final = {NC, PU} - {PU}
    2. syntactic_surprisal_punct_diff_punct_final = {SS, PU} - {PU}
    3. word_frequency_punct_diff_punct_final = {WF, PU} - {PU}
    4. word_length_punct_diff_punct_final = {WL, PU} - {PU}
    5. all_complexity_metrics_punct_diff_punct_final = {CM, PU} - {PU}
    6. pos_dep_tags_all_complexity_metrics_diff_all_complexity_metrics_punct = {PD, CM, PU} - {CM, PU}
    7. aggregated_contrege_comp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CC, PD, CM, PU} - {PD, CM, PU}
    8. aggregated_contrege_incomp_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {CI, PD, CM, PU} - {PD, CM, PU}
    9. aggregated_incontrege_pos_dep_tags_all_complexity_metrics_diff_pos_dep_tags_all_complexity_metrics = {INC, PD, CM, PU} - {PD, CM, PU}
    10. aggregated_bert_PCA_dims_15_contrege_incomp_pos_dep_tags_node_count_diff_aggregated_contrege_incomp_pos_dep_tags_node_count = {BERT, CI, PD, CM, PU} - {CI, PD, CM, PU}
  16. False Discovery Rate correction is then performed for all of the significance tests as described in the paper by running the perform_FDR_correction.ipynb notebook. For the punctuation feature, we obtain files of the form SubjectName_sig_group_corrected.npy and for all the other tests, files of the form SubjectName_sig_bootstrap_group_corrected.npy are obtained. These files are stored in the same subfolders of the predictions folder that contain the uncorrected p-val files.

  17. To generate the brain maps shown in the paper, we need to transform the significance testing results and R^2 scores that are in subject space to MNI space. Run the mni_transform.ipynb notebook to perform this transformation. The transformed files are saved in the predictions_mni folder. Note that running the aforementioned notebook requires FSL to be installed.

  18. Finally, running the create_figures.ipynb notebook generates the figures in our paper in a folder called figures. R^2+ figures are stored in r2plus_figures subfolder and the significance testing results are stored in the sig_figures subfolder. blank_plot_of_rois.png is a plot showing the ROIs and the ROI analysis figures are saved in the roi_figures subfolder.

The syntactic information analysis can be carried out by following these steps:

  1. Run the generate_ancestor_data_for_information_analysis.ipynb notebook to generate numpy files that encode the ancestor information. These files are stored in the ancestor_information_analysis folder.

  2. Then run the syntactic_information_analysis.ipynb notebook to perform the prediction analysis. The notebook generates a CSV file called final_syntactic_information_analysis_results.csv that contains the prediction accuracies and the associated p-vals. The last cell of the notebook shows the label distribution for each level.

To test that the BERT embeddings are better predictors of GloVe-based semantic vectors (extracted from spaCy) than the ConTreGE vectors, we first need to extract the GloVe-based semantic vectors by running the generate_spacy_embeddings.ipynb notebook. Then run the compare_glove_vectors_predictivity.ipynb notebook to train and test RidgeCV models that predict the GloVe-based semantic vectors. The outputs of the last two cells show that BERT embeddings are much predictors of these GloVe-based semantic vectors when compared to the ConTreGE vectors.

References

  1. Adhikari, Bijaya, et al. "Sub2vec: Feature learning for subgraphs." Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, Cham, 2018.

  2. Roark, Brian. "Probabilistic top-down parsing and language modeling." Computational linguistics 27.2 (2001): 249-276.

  3. Roark, Brian, et al. "Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top-down parsing." Proceedings of the 2009 conference on empirical methods in natural language processing. 2009.

  4. Fedorenko, Evelina, et al. "New method for fMRI investigations of language: defining ROIs functionally in individual subjects." Journal of neurophysiology 104.2 (2010): 1177-1194.

Owner
Aniketh Janardhan Reddy
Computer Science PhD Student, UC Berkeley
Aniketh Janardhan Reddy
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 896 Jan 01, 2023
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022