You Only 👀 One Sequence

Overview

You Only 👀 One Sequence

  • TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO object detection benchmark.

  • This project is under active development.


You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection

by Yuxin Fang1 *, Bencheng Liao1 *, Xinggang Wang1 ✉️ , Jiemin Fang2, 1, Jiyang Qi1, Rui Wu3, Jianwei Niu3, Wenyu Liu1.

1 School of EIC, HUST, 2 Institute of AI, HUST, 3 Horizon Robotics.

(*) equal contribution, ( ✉️ ) corresponding author.

arXiv technical report (arXiv 2106.00666)


You Only Look at One Sequence (YOLOS)

The Illustration of YOLOS

yolos

Highlights

Directly inherited from ViT (DeiT), YOLOS is not designed to be yet another high-performance object detector, but to unveil the versatility and transferability of Transformer from image recognition to object detection. Concretely, our main contributions are summarized as follows:

  • We use the mid-sized ImageNet-1k as the sole pre-training dataset, and show that a vanilla ViT (DeiT) can be successfully transferred to perform the challenging object detection task and produce competitive COCO results with the fewest possible modifications, i.e., by only looking at one sequence (YOLOS).

  • We demonstrate that 2D object detection can be accomplished in a pure sequence-to-sequence manner by taking a sequence of fixed-sized non-overlapping image patches as input. Among existing object detectors, YOLOS utilizes minimal 2D inductive biases. Moreover, it is feasible for YOLOS to perform object detection in any dimensional space unaware the exact spatial structure or geometry.

  • For ViT (DeiT), we find the object detection results are quite sensitive to the pre-train scheme and the detection performance is far from saturating. Therefore the proposed YOLOS can be used as a challenging benchmark task to evaluate different pre-training strategies for ViT (DeiT).

  • We also discuss the impacts as wel as the limitations of prevalent pre-train schemes and model scaling strategies for Transformer in vision through transferring to object detection.

Results

Model Pre-train Epochs ViT (DeiT) Weight / Log Fine-tune Epochs Eval Size YOLOS Checkpoint / Log AP @ COCO val
YOLOS-Ti 300 FB 300 512 Baidu Drive, Google Drive / Log 28.7
YOLOS-S 200 Baidu Drive, Google Drive / Log 150 800 Baidu Drive, Google Drive / Log 36.1
YOLOS-S 300 FB 150 800 Baidu Drive, Google Drive / Log 36.1
YOLOS-S (dWr) 300 Baidu Drive, Google Drive / Log 150 800 Baidu Drive, Google Drive / Log 37.6
YOLOS-B 1000 FB 150 800 Baidu Drive, Google Drive / Log 42.0

Notes:

  • The access code for Baidu Drive is yolo.
  • The FB stands for model weights provided by DeiT (paper, code). Thanks for their wonderful works.
  • We will update other models in the future, please stay tuned :)

Requirement

This codebase has been developed with python version 3.6, PyTorch 1.5+ and torchvision 0.6+:

conda install -c pytorch pytorch torchvision

Install pycocotools (for evaluation on COCO) and scipy (for training):

conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Data preparation

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Training

Before finetuning on COCO, you need download the ImageNet pretrained model to the /path/to/YOLOS/ directory

To train the YOLOS-Ti model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 2 \
    --lr 5e-5 \
    --epochs 300 \
    --backbone_name tiny \
    --pre_trained /path/to/deit-tiny.pth\
    --eval_size 512 \
    --init_pe_size 800 1333 \
    --output_dir /output/path/box_model
To train the YOLOS-S model with 200 epoch pretrained Deit-S in the paper, run this command:

python -m torch.distributed.launch
--nproc_per_node=8
--use_env main.py
--coco_path /path/to/coco --batch_size 1
--lr 2.5e-5
--epochs 150
--backbone_name small
--pre_trained /path/to/deit-small-200epoch.pth
--eval_size 800
--init_pe_size 512 864
--mid_pe_size 512 864
--output_dir /output/path/box_model

To train the YOLOS-S model with 300 epoch pretrained Deit-S in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name small \
    --pre_trained /path/to/deit-small-300epoch.pth\
    --eval_size 800 \
    --init_pe_size 512 864 \
    --mid_pe_size 512 864 \
    --output_dir /output/path/box_model

To train the YOLOS-S (dWr) model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name small_dWr \
    --pre_trained /path/to/deit-small-dWr-scale.pth\
    --eval_size 800 \
    --init_pe_size 512 864 \
    --mid_pe_size 512 864 \
    --output_dir /output/path/box_model
To train the YOLOS-B model in the paper, run this command:

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env main.py \
    --coco_path /path/to/coco
    --batch_size 1 \
    --lr 2.5e-5 \
    --epochs 150 \
    --backbone_name base \
    --pre_trained /path/to/deit-base.pth\
    --eval_size 800 \
    --init_pe_size 800 1344 \
    --mid_pe_size 800 1344 \
    --output_dir /output/path/box_model

Evaluation

To evaluate YOLOS-Ti model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 2 --backbone_name tiny --eval --eval_size 512 --init_pe_size 800 1333 --resume /path/to/YOLOS-Ti

To evaluate YOLOS-S model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/YOLOS-S

To evaluate YOLOS-S (dWr) model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small_dWr --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/YOLOS-S(dWr)

To evaluate YOLOS-B model on COCO, run:

python main.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 800 1344 --mid_pe_size 800 1344 --resume /path/to/YOLOS-B

Visualization

We have observed some intriguing properties of YOLOS, and we are working on a notebook to better demonstrate them, please stay tuned :)

Visualize box prediction and object categories distribution

  1. To Get visualization in the paper, you need the finetuned YOLOS models on COCO, run following command to get 100 Det-Toks prediction on COCO val split, then it will generate /path/to/YOLOS/visualization/modelname-eval-800-eval-pred.json
python cocoval_predjson_generation.py --coco_path /path/to/coco --batch_size 1 --backbone_name small --eval --eval_size 800 --init_pe_size 512 864 --mid_pe_size 512 864 --resume /path/to/yolos-s-model.pth --output_dir ./visualization
  1. To get all ground truth object categories on all images from COCO val split, run following command to generate /path/to/YOLOS/visualization/coco-valsplit-cls-dist.json
python cocoval_gtclsjson_generation.py --coco_path /path/to/coco --batch_size 1 --output_dir ./visualization
  1. To visualize the distribution of Det-Toks' bboxs and categories, run following command to generate .png files in /path/to/YOLOS/visualization/
 python visualize_dettoken_dist.py --visjson /path/to/YOLOS/visualization/modelname-eval-800-eval-pred.json --cococlsjson /path/to/YOLOS/visualization/coco-valsplit-cls-dist.json

cls cls

Visualize self-attention of the [DetTok] token on the different heads of the last layer:

we are working on a notebook to better demonstrate them, please stay tuned :)

Acknowledgement ❤️

This project is based on DETR (paper, code), DeiT (paper, code) and timm. Thanks for their wonderful works.

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@article{YOLOS,
  title={You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection},
  author={Fang, Yuxin and Liao, Bencheng and Wang, Xinggang and Fang, Jiemin and Qi, Jiyang and Wu, Rui and Niu, Jianwei and Liu, Wenyu},
  journal={arXiv preprint arXiv:2106.00666},
  year={2021}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022