Sinkformers: Transformers with Doubly Stochastic Attention

Overview

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention"

Paper

You will find our paper here.

Compat

This package has been developed and tested with python3.8. It is therefore not guaranteed to work with earlier versions of python.

Install the repository on your machine

This package can easily be installed using pip, with the following command:

pip install numpy
pip install -e .

This will install the package and all its dependencies, listed in requirements.txt.

Each command has to be executed from the root folder sinkformers. Our code is distributed in the different repositories. For each repository, we modify the architectures proposed by replacing the SoftMax attention with a Sinkhorn attention.

Defining a toy Sinkformer for which attention matrices are doubly stochastic

For this example we use a Transformer from the nlp-tutorial library and define its Sinkformer counterpart with the argument "n_it", the number of iterations in Sinkhorn's algorithm.

cd nlp-tutorial/text-classification-transformer
import torch
from model import TransformerEncoder
n_it = 1
print('1 iteration in Sinkhorn corresponds to the original Transformer: ')
transformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = transformer(inp)
n_it = 5
print('5 iteration in Sinkhorn gives a Sinkformer with perfectly doubly stochastic attention matrices: ')
sinkformer = TransformerEncoder(vocab_size=1000, seq_len=512, n_layers=1,  n_heads=1, n_it=n_it, print_attention=True, pad_id=-1)
inp = torch.arange(512).repeat(5, 1)
out = sinkformer(inp)

Then go back to the root:

cd ..
cd ..

Reproducing the experiments of the paper

Comparison of the different normalizations.

python plot_normalizations.py

ModelNet 40 classification. Code adapted from this repository. First, you need to preprocess the ModelNet40 dataset available here. Unzip it and save it under model_net_40/data. Then, preferably on multiple cpus, run

cd model_net_40
python to_h5.py
python formatting.py
cd ..
mv model_net_40/data/ModelNet40_cloud.h5 set_transformer/ModelNet40_cloud.h5
cd set_transformer
mkdir ../dataset
mv ModelNet40_cloud.h5 ../dataset/ModelNet40_cloud.h5
cd ..

Then you can train a Set Sinkformer (or Set Transformer) on ModelNet 40 with

cd set_transformer
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd set_transformer
python one_expe.py --help
cd ..

Results are saved in the folder set_transformer/results. You can plot the learning curves using the script set_transformer/plot_results.py. The array iterations in the script must contains the different values for n_it used when training.

Sentiment Analysis. Code adapted from this repository. You can also train a Sinkformer for Sentiment Analysis on the IMDb Dataset with the following command (the IMDb Dataset is downloaded automatically).

cd nlp-tutorial/text-classification-transformer
python one_expe.py
cd ..
cd ..

Arguments for one_expe.py can be accessed through

cd nlp-tutorial/text-classification-transformer
python one_expe.py --help
cd ..

Results are saved in the folder nlp-tutorial/text-classification-transformer/results. You can plot the learning curves using the script nlp-tutorial/text-classification-transformer/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT Cats and Dogs classification. Code adapted from this repository. First, you can download the data set here, unzip it and save the train and test repositories at sinkformers/vit-pytorch/examples/data. Then you can run

cd vit-pytorch
python one_expe.py
cd ..

Arguments for one_expe.py can be accessed through

cd vit-pytorch
python one_expe.py --help
cd ..

Results are saved in the folder vit-pytorch/results. You can plot the learning curves using the script vit-pytorch/plot_results.py. The array iterations in the script must contain the different values for "n_it" used when training.

ViT MNIST. The MNIST dataset will be downloaded automatically.

cd vit-pytorch
python one_expe_mnist.py
cd ..

Arguments for one_expe_mnist.py can be accessed through

cd vit-pytorch
python one_expe_mnist.py --help
cd ..

Especially, the argument "ps" is the patch size. Results are saved in the folder vit-pytorch/results_mnist. You can plot the learning curves using the script vit-pytorch/plot_results_mnist.py. The array iterations in the script must contain the different values for "n_it" used when training. The array patches_size in the script must contain the different values for "ps" used when training.

Cite

If you use this code in your project, please cite::

Michael E. Sander, Pierre Ablin, Mathieu Blondel, Gabriel Peyré
Sinkformers: Transformers with Doubly Stochastic Attention
arXiv preprint arXiv:2110.11773, 2021
https://arxiv.org/abs/2110.11773
Owner
Michael E. Sander
Michael E. Sander
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning

Machine_Learning Election Exit Poll Prediction and U.S.A Presidential Speech Analysis using Machine Learning This project is based on 2 case-studies:

Avnika Mehta 1 Jan 27, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022