Pytorch Lightning Implementation of SC-Depth Methods.

Overview

SC_Depth_pl:

This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video.

In the V1 (IJCV 2021 & NeurIPS 2019), we propose (i) geometry consistency loss for scale-consistent depth prediction over video and (ii) self-discovered mask for detecting and removing dynamic regions during training towards higher accuracy. We also validate the predicted depth in the Visual SLAM scenario.

In the V2 (TPMAI 2022), we propose auto-recitify network (ARN) to remove relative image rotation in hand-held camera captured videos, e.g., some indoor datasets. We show that the proposed ARN, which is self-supervised trained in an end-to-end fashion, greatly eases the training and significantly boosts the performance.

Install

conda create -n sc_depth_env python=3.6
conda activate sc_depth_env
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset

We preprocess all existing video datasets to the following general video format for training and testing:

Dataset
  -Training
    --Scene0000
      ---*.jpg (list of images)
      ---cam.txt (3x3 intrinsic)
      ---depth (a folder containing gt depths, optional for validation)
    --Scene0001
    ...
    train.txt (containing training scene names)
    val.txt (containing validation scene names)
  -Testing
    --color (containg testing images)
    --depth (containg ground truth depths)

You can convert it by yourself (on your own video data) or download our pre-processed standard datasets:

[kitti_raw] [nyu]

Training

We provide "scripts/run_train.sh", which shows how to train on kitti and nyu.

Testing

We provide "scripts/run_test.sh", which shows how test on kitti and nyu.

Inference

We provide "scripts/run_inference.sh", which shows how to save depths (.npy) and visualization results (.jpg).

Pretrained models

We provide pretrained models on kitti and nyu datasets. You need to uncompress it and put it into "ckpt" folder. If you run the "scripts/run_test.sh" with the pretrained model (fix the path before running), you should get the following results:

[kitti_scv1_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.119 0.878 0.053 4.987 0.196 0.859 0.956 0.981

[nyu_scv2_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.142 0.112 0.061 0.554 0.186 0.808 0.951 0.987

References

SC-DepthV1:

Unsupervised Scale-consistent Depth Learning from Video (IJCV 2021)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Zhichao Li, Le Zhang, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@article{bian2021ijcv, 
  title={Unsupervised Scale-consistent Depth Learning from Video}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Li, Zhichao and Zhang, Le and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian}, 
  journal= {International Journal of Computer Vision (IJCV)}, 
  year={2021} 
}

which is an extension of previous conference version: Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video (NeurIPS 2019)
Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@inproceedings{bian2019neurips,
  title={Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video},
  author={Bian, Jiawang and Li, Zhichao and Wang, Naiyan and Zhan, Huangying and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year={2019}
}

SC-DepthV2:

Auto-Rectify Network for Unsupervised Indoor Depth Estimation (TPAMI 2022)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, Ian Reid [paper]

@article{bian2021tpami, 
  title={Auto-Rectify Network for Unsupervised Indoor Depth Estimation}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Chin, Tat-Jin and Shen, Chunhua and Reid, Ian}, 
  journal= {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, 
  year={2021} 
}
Owner
JiaWang Bian
PHD Student
JiaWang Bian
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
A Machine Teaching Framework for Scalable Recognition

MEMORABLE This repository contains the source code accompanying our ICCV 2021 paper. A Machine Teaching Framework for Scalable Recognition Pei Wang, N

2 Dec 08, 2021
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022