A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

Overview

CoVA: Context-aware Visual Attention for Webpage Information Extraction

Abstract

Webpage information extraction (WIE) is an important step to create knowledge bases. For this, classical WIE methods leverage the Document Object Model (DOM) tree of a website. However, use of the DOM tree poses significant challenges as context and appearance are encoded in an abstract manner. To address this challenge we propose to reformulate WIE as a context-aware Webpage Object Detection task. Specifically, we develop a Context-aware Visual Attention-based (CoVA) detection pipeline which combines appearance features with syntactical structure from the DOM tree. To study the approach we collect a new large-scale dataset of e-commerce websites for which we manually annotate every web element with four labels: product price, product title, product image and background. On this dataset we show that the proposed CoVA approach is a new challenging baseline which improves upon prior state-of-the-art methods.

CoVA Dataset

We labeled 7,740 webpages spanning 408 domains (Amazon, Walmart, Target, etc.). Each of these webpages contains exactly one labeled price, title, and image. All other web elements are labeled as background. On average, there are 90 web elements in a webpage.

Webpage screenshots and bounding boxes can be obtained here

Train-Val-Test split

We create a cross-domain split which ensures that each of the train, val and test sets contains webpages from different domains. Specifically, we construct a 3 : 1 : 1 split based on the number of distinct domains. We observed that the top-5 domains (based on number of samples) were Amazon, EBay, Walmart, Etsy, and Target. So, we created 5 different splits for 5-Fold Cross Validation such that each of the major domains is present in one of the 5 splits for test data. These splits can be accessed here

CoVA End-to-end Training Pipeline

Our Context-Aware Visual Attention-based end-to-end pipeline for Webpage Object Detection (CoVA) aims to learn function f to predict labels y = [y1, y2, ..., yN] for a webpage containing N elements. The input to CoVA consists of:

  1. a screenshot of a webpage,
  2. list of bounding boxes [x, y, w, h] of the web elements, and
  3. neighborhood information for each element obtained from the DOM tree.

This information is processed in four stages:

  1. the graph representation extraction for the webpage,
  2. the Representation Network (RN),
  3. the Graph Attention Network (GAT), and
  4. a fully connected (FC) layer.

The graph representation extraction computes for every web element i its set of K neighboring web elements Ni. The RN consists of a Convolutional Neural Net (CNN) and a positional encoder aimed to learn a visual representation vi for each web element i ∈ {1, ..., N}. The GAT combines the visual representation vi of the web element i to be classified and those of its neighbors, i.e., vk βˆ€k ∈ Ni to compute the contextual representation ci for web element i. Finally, the visual and contextual representations of the web element are concatenated and passed through the FC layer to obtain the classification output.

Pipeline

Experimental Results

Table of Comparison Cross Domain Accuracy (mean Β± standard deviation) for 5-fold cross validation.

NOTE: Cross Domain means we train the model on some web domains and test it on completely different domains to evaluate the generalizability of the models to unseen web templates.

Attention Visualizations!

Attention Visualizations Attention Visualizations where red border denotes web element to be classified, and its contexts have green shade whose intensity denotes score. Price in (a) get much more score than other contexts. Title and image in (b) are scored higher than other contexts for price.

Cite

If you find this useful in your research, please cite our ArXiv pre-print:

Coming soon!
Owner
Keval Morabia
AI @bloomberg | UIUC CS | Ex - AWS, Microsoft Research
Keval Morabia
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Pratham Mehta 10 Nov 11, 2022
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
(SIGIR2020) β€œAsymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs β–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•—β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ•— β•šβ–ˆβ–ˆβ•— β–ˆβ–ˆβ•”β•β–ˆβ–ˆβ•”β•β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•‘ β–ˆβ–ˆβ•”β•β•β–ˆβ–ˆβ•—β–ˆβ–ˆβ•”β•β•β•β•β•β•šβ•β•β–ˆβ–ˆβ•”β•β•β• β•šβ–ˆβ–ˆ

Daniel Bolya 4.6k Dec 30, 2022