Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Overview

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation

Languages Experimented:

  • Data Overview:

    Source Target Training Data Valid1 Valid2 Test data
    ZH EN WMT17 without UN corpus WMT2017 newstest WMT2018 newstest WMT2020 newstest
    DE EN WMT17 WMT2017 newstest WMT2018 newstest WMT2014 newstest
    FR EN WMT14 without UN corpus WMT2015 newsdiscussdev WMT2015 newsdiscusstest WMT2014 newstest
  • Corpus Statistics:

    Lang-pair Data Type #Sentences #tokens (English side)
    zh-en Train 9355978 161393634
    Valid1 2001 47636
    Valid2 3981 98308
    test 2000 65561
    de-en Train 4001246 113777884
    Valid1 2941 74288
    Valid2 2970 78358
    test 3003 78182
    fr-en Train 23899064 73523616
    Valid1 1442 30888
    Valid2 1435 30215
    test 3003 81967

Scripts (as shown in paper's appendix)

  • Set-up:

    • To execute the scripts shown below, it's required that fairseq version 0.9 is installed along with COMET. The way to easily install them after cloning this repo is executing following commands (under root of this repo):
      cd fairseq-0.9.0
      pip install --editable ./
      cd ../COMET
      pip install .
    • It's also possible to directly install COMET through pip: pip install unbabel-comet, but the recent version might have different dependency on other packages like fairseq. Please check COMET's official website for the updated information.
    • To make use of script that relies on COMET model (in case of dual-comet), a model from COMET should be downloaded. It can be easily done by running following script:
      from comet.models import download_model
      download_model("wmt-large-da-estimator-1719")
  • Pretrain the model:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
        --max-tokens 2048 --update-freq 16 \
        --seed 2 
  • Adversarial Attack:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --train-subset valid \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_bleu --mrt-k 16 \
        --batch-size 2 --update-freq 64 \
        --seed 2 \
        --restore-file $PREETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader 
  • Data Augmentation:

    fairseq-train $DATADIR \
        -s $src -t $tgt \
        --train-subset valid \
        --valid-subset valid1 \
        --left-pad-source False \
        --share-decoder-input-output-embed \
        --encoder-embed-dim 512 \
        --arch transformer_wmt_en_de \
        --dual-training \
        --auxillary-model-path $AUX_MODEL \
        --auxillary-model-save-dir $AUX_MODEL_SAVE \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 0.000001 --warmup-updates 1000 \
        --lr 0.00001 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_comet/dual_mrt --mrt-k 8 \
        --comet-route $COMET_PATH \
        --batch-size 4 \
        --skip-invalid-size-inputs-valid-test \
        --update-freq 1 \
        --on-the-fly-train --adv-percent 30 \
        --seed 2 \
        --restore-file $PRETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader \
        --save-dir $CHECKPOINT_FOLDER 

Generation and Test:

  • For Chinese-English, we use sentencepiece to perform the BPE so it's required to be removed in generation step. For all test we use beam size = 5. Noitce that we modified the code in fairseq-gen to use sacrebleu.tokenizers.TokenizerZh() to tokenize Chinese when the direction is en-zh.

    fairseq-generate $DATA-FOLDER \
        -s zh -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe sentencepiece \
        --sacrebleu \
        --beam 5
  • For French-Enlish, German-English, we modified the script to detokenize the moses tokenizer (which we used to preprocess the data). To reproduce the result, use following script:

    fairseq-generate $DATA-FOLDER \
        -s de/fr -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe \
        ---detokenize-moses \
        --sacrebleu \
        --beam 5

    Here --detokenize-moses would call detokenizer during the generation step and detokenize predictions before evaluating it. It would slow the generation step. Another way to manually do this is to retrieve prediction and target sentences from output file of fairseq and manually apply detokenizer from detokenizer.perl.

BibTex

@misc{tan2021doublytrained,
      title={Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation}, 
      author={Weiting Tan and Shuoyang Ding and Huda Khayrallah and Philipp Koehn},
      year={2021},
      eprint={2110.05691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Steven Tan
Johns Hopkins 21' Computer Science & Applied Mathematics and Statistics Major
Steven Tan
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023