Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Overview

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation

Languages Experimented:

  • Data Overview:

    Source Target Training Data Valid1 Valid2 Test data
    ZH EN WMT17 without UN corpus WMT2017 newstest WMT2018 newstest WMT2020 newstest
    DE EN WMT17 WMT2017 newstest WMT2018 newstest WMT2014 newstest
    FR EN WMT14 without UN corpus WMT2015 newsdiscussdev WMT2015 newsdiscusstest WMT2014 newstest
  • Corpus Statistics:

    Lang-pair Data Type #Sentences #tokens (English side)
    zh-en Train 9355978 161393634
    Valid1 2001 47636
    Valid2 3981 98308
    test 2000 65561
    de-en Train 4001246 113777884
    Valid1 2941 74288
    Valid2 2970 78358
    test 3003 78182
    fr-en Train 23899064 73523616
    Valid1 1442 30888
    Valid2 1435 30215
    test 3003 81967

Scripts (as shown in paper's appendix)

  • Set-up:

    • To execute the scripts shown below, it's required that fairseq version 0.9 is installed along with COMET. The way to easily install them after cloning this repo is executing following commands (under root of this repo):
      cd fairseq-0.9.0
      pip install --editable ./
      cd ../COMET
      pip install .
    • It's also possible to directly install COMET through pip: pip install unbabel-comet, but the recent version might have different dependency on other packages like fairseq. Please check COMET's official website for the updated information.
    • To make use of script that relies on COMET model (in case of dual-comet), a model from COMET should be downloaded. It can be easily done by running following script:
      from comet.models import download_model
      download_model("wmt-large-da-estimator-1719")
  • Pretrain the model:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
        --max-tokens 2048 --update-freq 16 \
        --seed 2 
  • Adversarial Attack:

    fairseq-train $DATADIR \
        --source-lang $src \
        --target-lang $tgt \
        --save-dir $SAVEDIR \
        --share-decoder-input-output-embed \
        --train-subset valid \
        --arch transformer_wmt_en_de \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 1e-07 --warmup-updates 4000 \
        --lr 0.0005 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_bleu --mrt-k 16 \
        --batch-size 2 --update-freq 64 \
        --seed 2 \
        --restore-file $PREETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader 
  • Data Augmentation:

    fairseq-train $DATADIR \
        -s $src -t $tgt \
        --train-subset valid \
        --valid-subset valid1 \
        --left-pad-source False \
        --share-decoder-input-output-embed \
        --encoder-embed-dim 512 \
        --arch transformer_wmt_en_de \
        --dual-training \
        --auxillary-model-path $AUX_MODEL \
        --auxillary-model-save-dir $AUX_MODEL_SAVE \
        --optimizer adam --adam-betas ’(0.9, 0.98)’ --clip-norm 0.0 \
        --lr-scheduler inverse_sqrt \
        --warmup-init-lr 0.000001 --warmup-updates 1000 \
        --lr 0.00001 --min-lr 1e-09 \
        --dropout 0.3 --weight-decay 0.0001 \
        --criterion dual_comet/dual_mrt --mrt-k 8 \
        --comet-route $COMET_PATH \
        --batch-size 4 \
        --skip-invalid-size-inputs-valid-test \
        --update-freq 1 \
        --on-the-fly-train --adv-percent 30 \
        --seed 2 \
        --restore-file $PRETRAIN_MODEL \
        --reset-optimizer \
        --reset-dataloader \
        --save-dir $CHECKPOINT_FOLDER 

Generation and Test:

  • For Chinese-English, we use sentencepiece to perform the BPE so it's required to be removed in generation step. For all test we use beam size = 5. Noitce that we modified the code in fairseq-gen to use sacrebleu.tokenizers.TokenizerZh() to tokenize Chinese when the direction is en-zh.

    fairseq-generate $DATA-FOLDER \
        -s zh -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe sentencepiece \
        --sacrebleu \
        --beam 5
  • For French-Enlish, German-English, we modified the script to detokenize the moses tokenizer (which we used to preprocess the data). To reproduce the result, use following script:

    fairseq-generate $DATA-FOLDER \
        -s de/fr -t en \
        --task translation \
        --gen-subset $file \
        --path $CHECKPOINT \
        --batch-size 64 --quiet \
        --lenpen 1.0 \
        --remove-bpe \
        ---detokenize-moses \
        --sacrebleu \
        --beam 5

    Here --detokenize-moses would call detokenizer during the generation step and detokenize predictions before evaluating it. It would slow the generation step. Another way to manually do this is to retrieve prediction and target sentences from output file of fairseq and manually apply detokenizer from detokenizer.perl.

BibTex

@misc{tan2021doublytrained,
      title={Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation}, 
      author={Weiting Tan and Shuoyang Ding and Huda Khayrallah and Philipp Koehn},
      year={2021},
      eprint={2110.05691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Steven Tan
Johns Hopkins 21' Computer Science & Applied Mathematics and Statistics Major
Steven Tan
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022