Some toy examples of score matching algorithms written in PyTorch

Overview

toy_gradlogp

This repo implements some toy examples of the following score matching algorithms in PyTorch:

Installation

Basic requirements:

  • Python >= 3.6
  • TensorFlow >= 2.3.0
  • PyTorch >= 1.8.0

Install from PyPI

pip install toy_gradlogp

Or install the latest version from this repo

pip install git+https://github.com.Ending2015a/[email protected]

Examples

The examples are placed in toy_gradlogp/run/

Train an energy model

Run ssm-vr on 2spirals dataset (don't forget to add --gpu to enable gpu)

python -m toy_gradlogp.run.train_energy --gpu --loss ssm-vr --data 2spirals

To see the full options, type --help command:

python -m toy_gradlogp.run.train_energy --help
usage: train_energy.py [-h] [--logdir LOGDIR]
                       [--data {8gaussians,2spirals,checkerboard,rings}]
                       [--loss {ssm-vr,ssm,deen,dsm}]
                       [--noise {radermacher,sphere,gaussian}] [--lr LR]
                       [--size SIZE] [--eval_size EVAL_SIZE]
                       [--batch_size BATCH_SIZE] [--n_epochs N_EPOCHS]
                       [--n_slices N_SLICES] [--n_steps N_STEPS] [--eps EPS]
                       [--gpu] [--log_freq LOG_FREQ] [--eval_freq EVAL_FREQ]
                       [--vis_freq VIS_FREQ]

optional arguments:
  -h, --help            show this help message and exit
  --logdir LOGDIR
  --data {8gaussians,2spirals,checkerboard,rings}
                        dataset
  --loss {ssm-vr,ssm,deen,dsm}
                        loss type
  --noise {radermacher,sphere,gaussian}
                        noise type
  --lr LR               learning rate
  --size SIZE           dataset size
  --eval_size EVAL_SIZE
                        dataset size for evaluation
  --batch_size BATCH_SIZE
                        training batch size
  --n_epochs N_EPOCHS   number of epochs to train
  --n_slices N_SLICES   number of slices for sliced score matching
  --n_steps N_STEPS     number of steps for langevin dynamics
  --eps EPS             noise scale for langevin dynamics
  --gpu                 enable gpu
  --log_freq LOG_FREQ   logging frequency (unit: epoch)
  --eval_freq EVAL_FREQ
                        evaluation frequency (unit: epoch)
  --vis_freq VIS_FREQ   visualization frequency (unit: epoch)

Results

Tips: The larger density has a lower energy!

8gaussians

Algorithm Results
ssm-vr
ssm
deen
dsm

2spirals

Algorithm Results
ssm-vr
ssm
deen
dsm

checkerboard

Algorithm Results
ssm-vr
ssm
deen
dsm

rings

Algorithm Results
ssm-vr
ssm
deen
dsm
Owner
Ending Hsiao
Garbage collector
Ending Hsiao
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022