A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

Overview

What

Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun 23, 2019)

Why

  • OpenCV's DNN module, as of today, does not support NVIDIA GPUs. There is a GSOC WIP that will change this. Till then, this library is what I needed.

  • I used Alexy's fork because he keeps it more updated with required changes (like using std++-11 etc.).
    W

  • Other excellent libraries such as pyyolo, Yolo34Py did not work for me with CUDA 10.1 and OpenCV 4.1. They all had compiler issues

How to use this library

By dead simple, I mean dead simple.

  • This module doesn't bother cloning/building darknet. Build it whichever way you want, and simply make libdarknet.so accessible to this module.

  • Modify cfg/coco.data names= to point to where you have the labels (typically coco.names)

  • See example.py

Sample:

import simpleyolo.simpleYolo as yolo

configPath='./cfg/yolov3.cfg'
weightPath='./yolov3.weights'
metaPath='./cfg/coco.data'
imagePath='data/dog.jpg'

# initialize
m = yolo.SimpleYolo(configPath=configPath, 
                    weightPath=weightPath, 
                    metaPath=metaPath, 
                    darknetLib='./libdarknet_gpu.so', 
                    useGPU=True)
print ('detecting...')
detections = m.detect(imagePath)
print (detections)

When to use/not to use

  • Use this library if you want GPU support for YoloV3.
  • DON'T USE THIS LIBRARY if you want CPU support. It will work, but OpenCV's DNN module for YoloV3 is around 10x faster than using darknet directly. Really.
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, OpenCV DNN YoloV3 with blas/atlas takes ~2-4s
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, darkneti YoloV3 takes ~45s (gaah!)
  • BUT, on GPU, NVIDIA GeForce 1050 Ti, 4GB, same CPU, darknet YoloV3 takes 91ms (woot!)

If you really want to know how to get darknet working with OpenCV 4.1

Assuming you have built/installed CUDA/cuDNN and optionally OpenCV 4.1:

git clone https://github.com/AlexeyAB/darknet
cd darknet

Edit the Makefile, set:
GPU=1
CUDNN=1
LIBSO=1

If you want darknet to use OPENCV (not necessary), also set

OPENCV=1 

Notes:

  • You will make to change the Makefile to change pkg-config --libs opencv to pkg-config --libs opencv4 (2 instances). This will not be needed after Alexy fixes this issue

  • The above will only work if you previously compiled OpenCV 4+ with OPENCV_GENERATE_PKGCONFIG=ON and then copied the generated pc file like so: sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty, please, how do we build OpenCV 4.1 with CUDA 10.1?

Assuming you have built/installed CUDA/cuDNN:

git clone https://github.com/opencv/opencv
git clone https://github.com/opencv/opencv_contrib
cd opencv
mkdir build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
        -D INSTALL_PYTHON_EXAMPLES=OFF \
        -D INSTALL_C_EXAMPLES=OFF \
        -D OPENCV_ENABLE_NONFREE=ON \
        -D OPENCV_EXTRA_MODULES_PATH=/home/pp/opencv_contrib/modules \
        -D BUILD_EXAMPLES=OFF \
        -D WITH_CUDA=ON \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_OPENCL=ON \
        -D BUILD_opencv_cudacodec=OFF \
        -D BUILD_opencv_world=OFF \
        -D WITH_NVCUVID=OFF \
        -D WITH_OPENGL=ON \
        -D BUILD_opencv_python3=ON \
        -D OPENCV_GENERATE_PKGCONFIG=ON \
        ..
make -j$(nproc)
sudo make install

# don't forget this, for darknet and other libs to find opencv4 later
sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty pretty please, how do I build CUDA 10.1 and nvidia drivers?

Maybe later.

Owner
Pliable Pixels
I code like a Kindergartner
Pliable Pixels
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022