Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Related tags

Deep Learningpytorch
Overview

Session-aware BERT4Rec

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Everything in the paper is implemented (including vanilla BERT4Rec and SASRec), and can be reproduced.

Usage

1. Build Docker

./scripts/build.sh

2. Download dataset

Download corresponding datasets into some directory, such as ./roughs.

For Steam dataset, use version 2.

Rename datasets: 'ml1m' for MovieLens-1M, 'ml20m' for MovieLens-2M, 'steam2' for Steam.

3. Preprocess

  • --rough_root: for original dataset files
  • --data_root: for processed data files
python preprocess.py prepare ml1m --data_root ./data --rough_root ./roughs
python preprocess.py prepare ml20m --data_root ./data --rough_root ./roughs
python preprocess.py prepare steam2 --data_root ./data --rough_root ./roughs

For some stats:

python preprocess.py count stats --data_root ./data --rough_root ./roughs > dstats.tsv

4. Run

See default configuration setting in entry.py.

To modify configuration, make some directory under runs/ like ./runs/ml1m/bert4rec/vanilla/, and create config.json.

Sample Run Script

My x0.sh file that uses GPU No. 0:

runpy () {
    docker run \
        -it \
        --rm \
        --init \
        --gpus '"device=0"' \
        --shm-size 16G \
        --volume="$HOME/.cache/torch:/root/.cache/torch" \
        --volume="$PWD:/workspace" \
        session-aware-bert4rec \
        python "$@"
}

runpy entry.py ml1m/bert4rec/vanilla

Terminologies

The df_ prefix always means DataFrame from Pandas.

  • uid (str|int): User ID (unique).
  • iid (str|int): Item ID (unique).
  • sid (str|int): Session ID (unique), used only for session separation.
  • uindex (int): mapped index number of User ID, 1 ~ n.
  • iindex (int): mapped index number of Item ID, 1 ~ m.
  • timestamp (int): UNIX timestamp.

Data Files

After preprocessing, we'll have followings in each data/:dataset_name/ directory.

  • uid2uindex.pkl (dict): {uiduindex}.
  • iid2iindex.pkl (dict): {iidiindex}.
  • df_rows.pkl (df): column of (uindex, iindex, sid, timestamp), with no index.
  • train.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • valid.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • test.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • ns_random.pkl (dict): {uindex -> [list of iindex]}.
  • ns_popular.pkl (dict): {uindex -> [list of iindex]}.

Code References

《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022